Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Warsch is active.

Publication


Featured researches published by Wolfgang Warsch.


Embo Molecular Medicine | 2010

Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia

Andrea Hoelbl; Christian Schuster; Boris Kovacic; Bing-Mei Zhu; Mark C. Wickre; Maria A. Hoelzl; Sabine Fajmann; Florian Grebien; Wolfgang Warsch; Gabriele Stengl; Lothar Hennighausen; Valeria Poli; Hartmut Beug; Richard Moriggl; Veronika Sexl

Tumourigenesis caused by the Bcr/Abl oncoprotein is a multi‐step process proceeding from initial to tumour‐maintaining events and finally results in a complex tumour‐supporting network. A key to successful cancer therapy is the identification of critical functional nodes in an oncogenic network required for disease maintenance. So far, the transcription factors Stat3 and Stat5a/b have been implicated in bcr/abl‐induced initial transformation. However, to qualify as a potential drug target, a signalling pathway must be required for the maintenance of the leukaemic state. Data on the roles of Stat3 or Stat5a/b in leukaemia maintenance are elusive. Here, we show that both, Stat3 and Stat5 are necessary for initial transformation. However, Stat5‐ but not Stat3‐deletion induces G0/G1 cell cycle arrest and apoptosis of imatinib‐sensitive and imatinib‐resistant stable leukaemic cells in vitro. Accordingly, Stat5‐abrogation led to effective elimination of myeloid and lymphoid leukaemia maintenance in vivo. Hence, we identified Stat5 as a vulnerable point in the oncogenic network downstream of Bcr/Abl representing a case of non‐oncogene addiction (NOA).


Blood | 2011

High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia

Wolfgang Warsch; Karoline Kollmann; Eva Eckelhart; Sabine Fajmann; Sabine Cerny-Reiterer; Andrea Hölbl; Karoline V. Gleixner; Michael Dworzak; Matthias Mayerhofer; Gregor Hoermann; Harald Herrmann; Christian Sillaber; Gerda Egger; Peter Valent; Richard Moriggl; Veronika Sexl

In BCR-ABL1(+) leukemia, drug resistance is often associated with up-regulation of BCR-ABL1 or multidrug transporters as well as BCR-ABL1 mutations. Here we show that the expression level of the transcription factor STAT5 is another parameter that determines the sensitivity of BCR-ABL1(+) cells against tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, or dasatinib. Abelson-transformed cells, expressing high levels of STAT5, were found to be significantly less sensitive to TKI-induced apoptosis in vitro and in vivo but not to other cytotoxic drugs, such as hydroxyurea, interferon-β, or Aca-dC. The STAT5-mediated protection requires tyrosine phosphorylation of STAT5 independent of JAK2 and transcriptional activity. In support of this concept, under imatinib treatment and with disease progression, STAT5 mRNA and protein levels increased in patients with Ph(+) chronic myeloid leukemia. Based on our data, we propose a model in which disease progression in BCR-ABL1(+) leukemia leads to up-regulated STAT5 expression. This may be in part the result of clonal selection of cells with high STAT5 levels. STAT5 then accounts for the resistance against TKIs, thereby explaining the dose escalation frequently required in patients reaching accelerated phase. It also suggests that STAT5 may serve as an attractive target to overcome imatinib resistance in BCR-ABL1(+) leukemia.


Blood | 2011

A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development.

Eva Eckelhart; Wolfgang Warsch; Eva Zebedin; Olivia Simma; Dagmar Stoiber; Thomas Kolbe; Thomas Rülicke; Mathias Mueller; Emilio Casanova; Veronika Sexl

We generated a transgenic mouse line that expresses the Cre recombinase under the control of the Ncr1 (p46) promoter. Cre-mediated recombination was tightly restricted to natural killer (NK) cells, as revealed by crossing Ncr1-iCreTg mice to the eGFP-LSLTg reporter strain. Ncr1-iCreTg mice were further used to study NK cell-specific functions of Stat5 (signal transducers and activators of transcription 5) by generating Stat5(f/f) Ncr1-iCreTg animals. Stat5(f/f) Ncr1-iCreTg mice were largely devoid of NK cells in peripheral lymphoid organs. In the bone marrow, NK-cell maturation was abrogated at the NK cell-precursor stage. Moreover, we found that in vitro deletion of Stat5 in interleukin 2-expanded NK cells was incompatible with NK-cell viability. In vivo assays confirmed the complete abrogation of NK cell-mediated tumor control against B16F10-melanoma cells. In contrast, T cell-mediated tumor surveillance against MC38-adenocarcinoma cells was undisturbed. In summary, the results of our study show that STAT5 has a cell-intrinsic role in NK-cell development and that Ncr1-iCreTg mice are a powerful novel tool with which to study NK-cell development, biology, and function.


Cancer Cell | 2013

A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis.

Karoline Kollmann; Gerwin Heller; Christine Schneckenleithner; Wolfgang Warsch; Ruth Scheicher; Rene G. Ott; Markus Schäfer; Sabine Fajmann; Michaela Schlederer; Ana-Iris Schiefer; Ursula Reichart; Matthias Mayerhofer; Christoph Hoeller; Sabine Zöchbauer-Müller; Dontscho Kerjaschki; Christoph Bock; Lukas Kenner; Gerald Hoefler; Michael Freissmuth; Anthony R. Green; Richard Moriggl; Meinrad Busslinger; Marcos Malumbres; Veronika Sexl

Summary In contrast to its close homolog CDK4, the cell cycle kinase CDK6 is expressed at high levels in lymphoid malignancies. In a model for p185BCR-ABL+ B-acute lymphoid leukemia, we show that CDK6 is part of a transcription complex that induces the expression of the tumor suppressor p16INK4a and the pro-angiogenic factor VEGF-A. This function is independent of CDK6’s kinase activity. High CDK6 expression thus suppresses proliferation by upregulating p16INK4a, providing an internal safeguard. However, in the absence of p16INK4a, CDK6 can exert its full tumor-promoting function by enhancing proliferation and stimulating angiogenesis. The finding that CDK6 connects cell-cycle progression to angiogenesis confirms CDK6’s central role in hematopoietic malignancies and could underlie the selection pressure to upregulate CDK6 and silence p16INK4a.


Blood | 2013

JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia

Wolfgang Warsch; Christoph Walz; Veronika Sexl

The transcription factor signal transducers and activators of transcription 5 (STAT5) has an important and unique role in Breakpoint Cluster Region - Abelson 1 (BCR-ABL1)-driven neoplasias. STAT5 is an essential component in the signaling network that maintains the survival and growth of chronic myeloid leukemia (CML) cells. In contrast, the function of the prototypical upstream kinase of STAT5, the Janus kinase JAK2, in CML is still under debate. Although there is widespread agreement that JAK2 is part of the signaling network downstream of BCR-ABL1, it is unclear whether and under what circumstances JAK2 inhibitors may be beneficial for CML patients. Recent studies in murine models have cast doubt on the importance of JAK2 in CML maintenance. Nevertheless, JAK2 has been proposed to have a central role in the cytokine signaling machinery that allows the survival of CML stem cells in the presence of BCR-ABL1 tyrosine kinase inhibitors. In this review, we summarize the current debate and provide an overview of the arguments on both sides of the fence. We present recent evidence showing that CML stem cells do not depend on BCR-ABL1 kinase activity but require the continuous support of the hematopoietic niche and its distinct cytokine environment and suggest that it has the potential to resolve the dispute.


Blood | 2008

Leukemic challenge unmasks a requirement for PI3Kδ in NK cell–mediated tumor surveillance

Eva Zebedin; Olivia Simma; Christian Schuster; Eva M Putz; Sabine Fajmann; Wolfgang Warsch; Eva Eckelhart; Dagmar Stoiber; Eva Weisz; Johannes A. Schmid; Winfried F. Pickl; Christian Baumgartner; Peter Valent; Roland P. Piekorz; Michael Freissmuth; Veronika Sexl

Specific inhibitors of PI3K isoforms are currently evaluated for their therapeutic potential in leukemia. We found that BCR/ABL(+) human leukemic cells express PI3Kdelta and therefore explored its impact on leukemia development. Using PI3Kdelta-deficient mice, we define a dual role of PI3Kdelta in leukemia. We observed a growth-promoting effect in tumor cells and an essential function in natural killer (NK) cell-mediated tumor surveillance: Abelson-transformed PI3Kdelta-deficient cells induced leukemia in RAG2-deficient mice with an increased latency, indicating that PI3Kdelta accelerated leukemia progression in vivo. However, the absence of PI3Kdelta also affected NK cell-mediated tumor surveillance. PI3Kdelta-deficient NK cells failed to lyse a large variety of target cells because of defective degranulation, as also documented by capacitance recordings. Accordingly, transplanted leukemic cells killed PI3Kdelta-deficient animals more rapidly. As a net effect, no difference in disease latency in vivo was detected if both leukemic cells and NK cells lack PI3Kdelta. Other tumor models confirmed that PI3Kdelta-deficient mice succumbed more rapidly when challenged with T- or B-lymphoid leukemic or B16 melanoma cells. Thus, the action of PI3Kdelta in the NK compartment is as relevant to survival of the mice as the delayed tumor progression. This dual function must be taken into account when using PI3Kdelta inhibitors as antileukemic agents in clinical trials.


Leukemia | 2014

PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis

A Berger; Andrea Hoelbl-Kovacic; J Bourgeais; L Hoefling; Wolfgang Warsch; Eva Grundschober; Iris Z. Uras; Ingeborg Menzl; Eva Maria Putz; Gregor Hoermann; C Schuster; S Fajmann; E Leitner; Stefan Kubicek; Richard Moriggl; F Gouilleux; Veronika Sexl

The transcription factor STAT5 (signal transducer and activator of transcription 5) is frequently activated in hematological malignancies and represents an essential signaling node downstream of the BCR-ABL oncogene. STAT5 can be phosphorylated at three positions, on a tyrosine and on the two serines S725 and S779. We have investigated the importance of STAT5 serine phosphorylation for BCR-ABL-induced leukemogenesis. In cultured bone marrow cells, expression of a STAT5 mutant lacking the S725 and S779 phosphorylation sites (STAT5SASA) prohibits transformation and induces apoptosis. Accordingly, STAT5SASA BCR-ABL+ cells display a strongly reduced leukemic potential in vivo, predominantly caused by loss of S779 phosphorylation that prevents the nuclear translocation of STAT5. Three distinct lines of evidence indicate that S779 is phosphorylated by group I p21-activated kinase (PAK). We show further that PAK-dependent serine phosphorylation of STAT5 is unaffected by BCR-ABL tyrosine kinase inhibitor treatment. Interfering with STAT5 phosphorylation could thus be a novel therapeutic approach to target BCR-ABL-induced malignancies.


OncoImmunology | 2012

Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

Tatsuaki Mizutani; Nina Neugebauer; Eva Maria Putz; Nadine Moritz; Olivia Simma; Eva Zebedin-Brandl; Dagmar Gotthardt; Wolfgang Warsch; Eva Eckelhart; Hans-Peter Kantner; Ulrich Kalinke; Stefan Lienenklaus; Siegfried Weiss; Birgit Strobl; Mathias Müller; Veronika Sexl; Dagmar Stoiber

Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance.


Clinical Cancer Research | 2016

Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML.

Irina Sadovnik; Andrea Hoelbl-Kovacic; Harald Herrmann; Gregor Eisenwort; Sabine Cerny-Reiterer; Wolfgang Warsch; Gregor Hoermann; Georg Greiner; Katharina Blatt; Barbara Peter; Gabriele Stefanzl; Daniela Berger; Martin Bilban; Susanne Herndlhofer; Heinz Sill; Wolfgang R. Sperr; Berthold Streubel; Christine Mannhalter; Tessa L. Holyoake; Veronika Sexl; Peter Valent

Purpose: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs. Experimental Design: CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25+ CML cell line KU812. Results: In contrast to normal hematopoietic stem cells, CD34+/CD38− CML LSCs expressed the IL-2 receptor alpha chain, IL-2RA (CD25). STAT5 was found to induce expression of CD25 in Lin−/Sca-1+/Kit+ stem cells in C57Bl/6 mice. Correspondingly, shRNA-induced STAT5 depletion resulted in decreased CD25 expression in KU812 cells. Moreover, the BCR/ABL1 inhibitors nilotinib and ponatinib were found to decrease STAT5 activity and CD25 expression in KU812 cells and primary CML LSCs. A CD25-targeting shRNA was found to augment proliferation of KU812 cells in vitro and their engraftment in vivo in NOD/SCID-IL-2Rγ−/− mice. In drug-screening experiments, the PI3K/mTOR blocker BEZ235 promoted the expression of STAT5 and CD25 in CML cells. Finally, we found that BEZ235 produces synergistic antineoplastic effects on CML cells when applied in combination with nilotinib or ponatinib. Conclusions: CD25 is a novel STAT5-dependent marker of CML LSCs and may be useful for LSC detection and LSC isolation in clinical practice and basic science. Moreover, CD25 serves as a growth regulator of CML LSCs, which may have biologic and clinical implications and may pave the way for the development of new more effective LSC-eradicating treatment strategies in CML. Clin Cancer Res; 22(8); 2051–61. ©2015 AACR.


Leukemia | 2015

MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling

Karoline Kollmann; Jyoti Nangalia; Wolfgang Warsch; Hilmar Quentmeier; Anthony J. Bench; Elaine M. Boyd; Mike A. Scott; Hans G. Drexler; Anthony R. Green

Mutations in calreticulin (CALR) were recently described to be present in the majority of patients with a JAK2-unmutated myeloproliferative neoplasm (MPN).1,2 This discovery has had rapid clinical impact, and testing for CALR has been embedded in national and international diagnostic guidelines.3, 4, 5 However, a human MPN-derived cell line harboring a CALR mutation has not been reported and the mechanisms by which mutated-CALR results in an MPN remain unclear.

Collaboration


Dive into the Wolfgang Warsch's collaboration.

Top Co-Authors

Avatar

Veronika Sexl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Richard Moriggl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Dagmar Stoiber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Eva Eckelhart

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivia Simma

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter Valent

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Angelika Berger

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Emilio Casanova

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gregor Hoermann

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge