Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Woo-Yeon Kim is active.

Publication


Featured researches published by Woo-Yeon Kim.


Genome Research | 2009

The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group

Sung-Min Ahn; Tae-Hyung Kim; Sunghoon Lee; Deokhoon Kim; Ho Ghang; Dae-Soo Kim; Byoung Chul Kim; Sang Yoon Kim; Woo-Yeon Kim; Chulhong Kim; Daeui Park; Yong Seok Lee; Sangsoo Kim; Rohit Reja; Sungwoong Jho; Chang Geun Kim; Ji-Young Cha; Kyung-Hee Kim; Bonghee Lee; Jong Bhak; Seong-Jin Kim

We present the first Korean individual genome sequence (SJK) and analysis results. The diploid genome of a Korean male was sequenced to 28.95-fold redundancy using the Illumina paired-end sequencing method. SJK covered 99.9% of the NCBI human reference genome. We identified 420,083 novel single nucleotide polymorphisms (SNPs) that are not in the dbSNP database. Despite a close similarity, significant differences were observed between the Chinese genome (YH), the only other Asian genome available, and SJK: (1) 39.87% (1,371,239 out of 3,439,107) SNPs were SJK-specific (49.51% against Venters, 46.94% against Watsons, and 44.17% against the Yoruba genomes); (2) 99.5% (22,495 out of 22,605) of short indels (< 4 bp) discovered on the same loci had the same size and type as YH; and (3) 11.3% (331 out of 2920) deletion structural variants were SJK-specific. Even after attempting to map unmapped reads of SJK to unanchored NCBI scaffolds, HGSV, and available personal genomes, there were still 5.77% SJK reads that could not be mapped. All these findings indicate that the overall genetic differences among individuals from closely related ethnic groups may be significant. Hence, constructing reference genomes for minor socio-ethnic groups will be useful for massive individual genome sequencing.


BMC Bioinformatics | 2008

SNP@Promoter: a database of human SNPs (Single Nucleotide Polymorphisms) within the putative promoter regions

Byoung-Chul Kim; Woo-Yeon Kim; Daeui Park; Won-Hyong Chung; Kwang-sik Shin; Jong Bhak

BackgroundAnalysis of single nucleotide polymorphism (SNP) is becoming a key research in genomics fields. Many functional analyses of SNPs have been carried out for coding regions and splicing sites that can alter proteins and mRNA splicing. However, SNPs in non-coding regulatory regions can also influence important biological regulation. Presently, there are few databases for SNPs in non-coding regulatory regions.DescriptionWe identified 488,452 human SNPs in the putative promoter regions that extended from the +5000 bp to -500 bp region of the transcription start sites. Some SNPs occurring in transcription factor (TF) binding sites were also predicted (47,832 SNP; 9.8%). The result is stored in a database: SNP@promoter. Users can search the SNP@Promoter database using three entries: 1) by SNP identifier (rs number from dbSNP), 2) by gene (gene name, gene symbol, refSeq ID), and 3) by disease term. The SNP@Promoter database provides extensive genetic information and graphical views of queried terms.ConclusionWe present the SNP@Promoter database. It was created in order to predict functional SNPs in putative promoter regions and predicted transcription factor binding sites. SNP@Promoter will help researchers to identify functional SNPs in non-coding regions.


BMC Bioinformatics | 2008

SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803

Woo-Yeon Kim; Sungsoo Kang; Byoung-Chul Kim; Jeehyun Oh; Seong-Woong Cho; Jong Bhak; Jong-Soon Choi

BackgroundCyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date.DescriptionWe report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactions as well as their protein-level interactions using the model cyanobacterium, Synechocystis sp. PCC 6803. It predicts the protein-protein interactions using public interaction databases that contain mutually complementary and redundant data. Furthermore, SynechoNET provides information on transmembrane topology, signal peptide, and domain structure in order to support the analysis of regulatory membrane proteins. Such biological information can be queried and visualized in user-friendly web interfaces that include the interactive network viewer and search pages by keyword and functional category.ConclusionSynechoNET is an integrated protein-protein interaction database designed to analyze regulatory membrane proteins in cyanobacteria. It provides a platform for biologists to extend the genomic data of cyanobacteria by predicting interaction partners, membrane association, and membrane topology of Synechocystis proteins. SynechoNET is freely available at http://synechocystis.org/ or directly at http://bioportal.kobic.kr/SynechoNET/.


Journal of Molecular Evolution | 2006

Molecular Evolution of the Periphilin Gene in Relation to Human Endogenous Retrovirus M Element

Jae-Won Huh; Tae-Hyung Kim; Joo-Mi Yi; Eun-Sil Park; Woo-Yeon Kim; Ho-Su Sin; Dae-Soo Kim; Dosik Min; Sangsoo Kim; Chang-Bae Kim; Byung-Hwa Hyun; Soo-Kyung Kang; Jin-Sup Jung; Won Ho Lee; Osamu Takenaka; Heui-Soo Kim

HERV-M (human endogenous retrovirus M), related to the super family of HERV-K, has a methionine (M) tRNA primer-binding site, and is located within the periphilin gene on human chromosome 12q12. HERV-M has been integrated into the periphilin gene as the truncated form, 5′LTR-gag-pol-3′LTR. Polymerase chain reaction (PCR) and reverse transcription-polymerase chain reaction (RT-PCR) approaches were conducted to investigate its evolutionary origins. Interestingly, the insertion of retroelements in a common ancestor genome can make different transcript variants in different species. In the case of the periphilin gene, human (10 variants) and mouse (2 variants) lineages show different transcript variants. Insertion of HERV-M (variant 1-3) could affect the protein-coding region. Also, Alusq/x (variant 4-9) and L1ME4a (mammalian-wide subfamilies of LINE-1) (variant 10) in humans and SINE (short interspersed repetitive element) and RLTR15 (the mouse putative long terminal repeat) (variant 2) in mice could be driving forces in transcript diversification of the periphilin gene during mammalian evolution. The HERV-M derived transcripts (variant 1-3) were expressed in different human tissues, whereas they were not detected in crab-eating monkey and squirrel monkey tissues by RT-PCR amplification. Taken together, HERV-M seems to have been integrated into our common ancestor genome after the divergence of simians and prosimians, and then was actively expressed during hominoid evolution.


BMC Genomics | 2009

PDbase: a database of Parkinson's Disease-related genes and genetic variation using substantia nigra ESTs

Jin Ok Yang; Woo-Yeon Kim; So-Young Jeong; Jung-Hwa Oh; Sungwoong Jho; Jong Bhak; Nam-Soon Kim

BackgroundParkinsons disease (PD) is one of the most common neurodegenerative disorders, clinically characterized by impaired motor function. Since the etiology of PD is diverse and complex, many researchers have created PD-related research resources. However, resources for brain and PD studies are still lacking. Therefore, we have constructed a database of PD-related gene and genetic variations using the substantia nigra (SN) in PD and normal tissues. In addition, we integrated PD-related information from several resources.ResultsWe collected the 6,130 SN expressed sequenced tags (ESTs) from brain SN normal tissues and PD patients SN tissues using full-cDNA library and normalized cDNA library construction methods from our previous study. The SN ESTs were clustered in 2,951 unigene clusters and assigned in 2,678 genes. We then found up-regulated 57 genes and down-regulated 48 genes by comparing normal and PD SN ESTs frequencies with over 0.9 cut-off probability of differential expression based on the Audic and Claverie method. In addition, we integrated disease-related information from public resources. To examine the characteristics of these PD-related genes, we analyzed alternative splicing events, single nucleotide polymorphism (SNP) markers located in the gene regions, repeat elements, gene regulation elements, and pathways and protein-protein interaction networks.ConclusionWe constructed the PDbase database to capture the PD-related gene, genetic variation, and functional elements. This database contains 2,698 PD-related genes through ESTs discovered from human normal and PD patients SN tissues, and through integrating several public resources. PDbase provides the mitochondrion proteins, microRNA gene regulation elements, single nucleotide polymorphisms (SNPs) markers within PD-related gene structures, repeat elements, and pathways and networks with protein-protein interaction information. The PDbase information can aid in understanding the causation of PD. It is available at http://bioportal.kobic.re.kr/PDbase/. Supplementary data is available at http://bioportal.kobic.re.kr/PDbase/suppl.jsp


BMC Genomics | 2009

MitoVariome: a variome database of human mitochondrial DNA

Yong Seok Lee; Woo-Yeon Kim; Mihyun Ji; Ji Han Kim; Jong Bhak

BackgroundMitochondrial sequence variation provides critical information for studying human evolution and variation. Mitochondrial DNA provides information on the origin of humans, and plays a substantial role in forensics, degenerative diseases, cancers, and aging process. Typically, human mitochondrial DNA has various features such as HVSI, HVSII, single-nucleotide polymorphism (SNP), restriction enzyme sites, and short tandem repeat (STR).ResultsWe present a variome database (MitoVariome) of human mitochondrial DNA sequences. Queries against MitoVariome can be made using accession numbers or haplogroup/continent. Query results are presented not only in text but also in HTML tables to report extensive mitochondrial sequence variation information. The variation information includes repeat pattern, restriction enzyme site polymorphism, short tandem repeat, disease information as well as single nucleotide polymorphism. It also provides a graphical interface as Gbrowse displaying all variations at a glance. The web interface also provides the tool for assigning haplogroup based on the haplogroup-diagnostic system with complete human mitochondrial SNP position list and for retrieving sequences that users query against by using accession numbers.ConclusionMitoVariome is a freely accessible web application and database that enables human mitochondrial genome researchers to study genetic variation in mitochondrial genome with textual and graphical views accompanied by assignment function of haplogrouping if users submit their own data. Hence, the MitoVariome containing many kinds of variation features in the human mitochondrial genome will be useful for understanding mitochondrial variations of each individual, haplogroup, or geographical location to elucidate the history of human evolution.


Nucleic Acids Research | 2011

VnD: a structure-centric database of disease-related SNPs and drugs

Jin Ok Yang; Sangho Oh; Gunhwan Ko; Seongjin Park; Woo-Yeon Kim; Byungwook Lee; Sanghyuk Lee

Numerous genetic variations have been found to be related to human diseases. Significant portion of those affect the drug response as well by changing the protein structure and function. Therefore, it is crucial to understand the trilateral relationship among genomic variations, diseases and drugs. We present the variations and drugs (VnD), a consolidated database containing information on diseases, related genes and genetic variations, protein structures and drug information. VnD was built in three steps. First, we integrated various resources systematically to deduce catalogs of disease-related genes, single nucleotide polymorphisms (SNPs), protein mutations and relevant drugs. VnD contains 137 195 disease-related gene records (13 940 distinct genes) and 16 586 genetic variation records (1790 distinct variations). Next, we carried out structure modeling and docking simulation for wild-type and mutant proteins to examine the structural and functional consequences of non-synonymous SNPs in the drug-related genes. Conformational changes in 590 wild-type and 4437 mutant proteins from drug-related genes were included in our database. Finally, we investigated the structural and biochemical properties relevant to drug binding such as the distribution of SNPs in proximal protein pockets, thermo-chemical stability, interactions with drugs and physico-chemical properties. The VnD database, available at http://vnd.kobic.re.kr:8080/VnD/ or vandd.org, would be a useful platform for researchers studying the underlying mechanism for association among genetic variations, diseases and drugs.


PLOS ONE | 2013

Revising a personal genome by comparing and combining data from two different sequencing platforms.

Deokhoon Kim; Woo-Yeon Kim; Sun Young Lee; Sung-Yeoun Lee; Hongseok Yun; Soo Yong Shin; Jung-Youn Lee; Yoojin Hong; Youngmi Won; Seong-Jin Kim; Yong Seok Lee; Sung-Min Ahn

For the robust practice of genomic medicine, sequencing results must be compatible, regardless of the sequencing technologies and algorithms used. Presently, genome sequencing is still an imprecise science and is complicated by differences in the chemistry, coverage, alignment, and variant-calling algorithms. We identified ∼3.33 million single nucleotide variants (SNVs) and ∼3.62 million SNVs in the SJK genome using SOLiD and Illumina data, respectively. Approximately 3 million SNVs were concordant between the two platforms while 68,532 SNVs were discordant; 219,616 SNVs were SOLiD-specific and 516,080 SNVs were Illumina-specific (i.e., platform-specific). Concordant, discordant, and platform-specific SNVs were further analyzed and characterized. Overall, a large portion of heterozygous SNVs that were discordant with genotyping calls of single nucleotide polymorphism chips were highly confident. Approximately 70% of the platform-specific SNVs were located in regions containing repetitive sequences. Such platform-specificity may arise from differences between platforms, with regard to read length (36 bp and 72 bp vs. 50 bp), insert size (∼100–300 bp vs. ∼1–2 kb), sequencing chemistry (sequencing-by-synthesis using single nucleotides vs. ligation-based sequencing using oligomers), and sequencing quality. When data from the two platforms were merged for variant calling, the proportion of callable regions of the reference genome increased to 99.66%, which was 1.43% higher than the average callability of the two platforms, representing ∼40 million bases. In this study, we compared the differences in sequencing results between two sequencing platforms. Approximately 90% of the SNVs were concordant between the two platforms, yet ∼10% of the SNVs were either discordant or platform-specific, indicating that each platform had its own strengths and weaknesses. When data from the two platforms were merged, both the overall callability of the reference genome and the overall accuracy of the SNVs improved, demonstrating the likelihood that a re-sequenced genome can be revised using complementary data.


BMC Bioinformatics | 2009

Gevab: a prototype genome variation analysis browsing server

Woo-Yeon Kim; Sang Yoon Kim; Tae-Hyung Kim; Sung-Min Ahn; Ha Na Byun; Deokhoon Kim; Dae-Soo Kim; Yong Seok Lee; Ho Ghang; Daeui Park; Byoung Chul Kim; Chulhong Kim; Sunghoon Lee; Seong-Jin Kim; Jong Bhak

BackgroundThe first Korean individual diploid genome sequence data (KOREF) was publicized in December 2008.ResultsA Korean genome variation analysis and browsing server (Gevab) was constructed as a database and web server for the exploration and downloading of Korean personal genome(s). Information in the Gevab includes SNPs, short indels, and structural variation (SV) and comparison analysis between the NCBI human reference and the Korean genome(s). The user can find information on assembled consensus sequences, sequenced short reads, genetic variations, and relationships between genotype and phenotypes.ConclusionThis server is openly and publicly available online at http://koreagenome.org/en/ or directly http://gevab.org.


Genomics & Informatics | 2014

Identification of Ethnically Specific Genetic Variations in Pan-Asian Ethnos

Jin Ok Yang; Sohyun Hwang; Woo-Yeon Kim; Seong-Jin Park; Sang Cheol Kim; Kiejung Park; Byungwook Lee

Asian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups. We obtained 58,960 Pan-Asian single nucleotide polymorphisms of 1,953 individuals from 72 ethnic groups of 11 Asian countries. We selected 9,306 ethnic variant single nucleotide polymorphisms (ESNPs) and 5,167 ethnic variant copy number polymorphisms (ECNPs) using the nearest shrunken centroid method. We analyzed ESNPs and ECNPs in 3 hierarchical levels: superpopulation, subpopulation, and ethnic population. We also identified ESNP- and ECNP-related genes and their features. This study represents the first attempt to identify Asian ESNP and ECNP markers, which can be used to identify genetic differences and predict disease susceptibility and drug effectiveness in Asian ethnic populations.

Collaboration


Dive into the Woo-Yeon Kim's collaboration.

Top Co-Authors

Avatar

Jong Bhak

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae-Won Huh

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jin Ok Yang

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Dae-Soo Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daeui Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge