Woojin Park
Gwangju Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woojin Park.
Nanotechnology | 2010
Gunho Jo; Minhyeok Choe; Chu-Young Cho; Jin Ho Kim; Woojin Park; Sang Chul Lee; Woong-Ki Hong; Tae-Wook Kim; Seong-Ju Park; Byung Hee Hong; Yung Ho Kahng; Takhee Lee
This work demonstrates a large-scale batch fabrication of GaN light-emitting diodes (LEDs) with patterned multi-layer graphene (MLG) as transparent conducting electrodes. MLG films were synthesized using a chemical vapor deposition (CVD) technique on nickel films and showed typical CVD-synthesized MLG film properties, possessing a sheet resistance of [Formula: see text] with a transparency of more than 85% in the 400-800 nm wavelength range. The MLG was applied as the transparent conducting electrodes of GaN-based blue LEDs, and the light output performance was compared to that of conventional GaN LEDs with indium tin oxide electrodes. Our results present a potential development toward future practical application of graphene electrodes in optoelectronic devices.
Nanotechnology | 2012
Gunho Jo; Minhyeok Choe; Sang Chul Lee; Woojin Park; Yung Ho Kahng; Takhee Lee
Graphene is a promising next-generation conducting material with the potential to replace traditional electrode materials such as indium tin oxide in electrical and optical devices. It combines several advantageous characteristics including low sheet resistance, high optical transparency and excellent mechanical properties. Recent research has coincided with increased interest in the application of graphene as an electrode material in transistors, light-emitting diodes, solar cells and flexible devices. However, for more practical applications, the performance of devices should be further improved by the engineering of graphene films, such as through their synthesis, transfer and doping. This article reviews several applications of graphene films as electrodes in electrical and optical devices and discusses the essential requirements for applications of graphene films as electrodes.
Small | 2013
Jongwon Yoon; Woojin Park; Ga Yeong Bae; Yonghun Kim; Hun Soo Jang; Yujun Hyun; Sung Kwan Lim; Yung Ho Kahng; Woong Ki Hong; Byoung Hun Lee; Heung Cho Ko
A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes. In particular, a low Schottky barrier (∼22 meV) forms at the MoS2 /graphene interface, which is comparable to the MoS2 /metal interface. The high stability in electronic performance of the devices upon bending up to ±2.2 mm in compressive and tensile modes, and the ability to recover electrical properties after degradation upon annealing, reveal the efficacy of using 2D materials for creating highly flexible and transparent devices.
Advanced Materials | 2011
Sang Chul Lee; Gunho Jo; Seok-Ju Kang; Gunuk Wang; Minhyeok Choe; Woojin Park; Dong-Yu Kim; Yung Ho Kahng; Takhee Lee
S. Lee , G. Jo , S.-J. Kang , G. Wang , M. Choe , W Park , . Prof. D.-Y. Kim , H. Dr. . Y Kahng , Prof. Lee . TDepartment of Nanobio Materials and Electronics Department of Materials Science and Engineering Gwangju Institute of Science and Technology Gwangju 500–712, Korea E-mail: [email protected]; [email protected] Dr. Y. H. KahngResearch Institute for Solar and Sustainable Energies Gwangju Institute of Science and Technology Gwangju 500–712, Korea
Applied Physics Letters | 2010
Gunho Jo; Seok-In Na; Seung-Hwan Oh; Sang Chul Lee; Tae-Soo Kim; Gunuk Wang; Minhyeok Choe; Woojin Park; Jongwon Yoon; Dong-Yu Kim; Yung Ho Kahng; Takhee Lee
We demonstrate the fabrication of inverted-structure organic solar cells (OSCs) with graphene cathodes. The graphene film used in this work was work-function-engineered with an interfacial dipole layer to reduce the work function of graphene, which resulted in an increase in the built-in potential and enhancement of the charge extraction, thereby enhancing the overall device performance. Our demonstration of inverted-structure OSCs with work-function-engineering of graphene electrodes will foster the fabrication of more advanced structure OSCs with higher efficiency.
ACS Nano | 2010
Woong-Ki Hong; Gunho Jo; Jung Inn Sohn; Woojin Park; Minhyeok Choe; Gunuk Wang; Yung Ho Kahng; Mark E. Welland; Takhee Lee
We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.
Nanotechnology | 2011
Woojin Park; Gunho Jo; Woong-Ki Hong; Jongwon Yoon; Minhyeok Choe; Sang Chul Lee; Yongsung Ji; Geunjin Kim; Yung Ho Kahng; Kwanghee Lee; Deli Wang; Takhee Lee
We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires. Thus, chemical treatment with IPA can be a useful method for improving the photoresponse of ZnO nanowire devices.
Applied Physics Letters | 2012
Minhyeok Choe; Chu Young Cho; Jae Phil Shim; Woojin Park; Sung Kwan Lim; Woong Ki Hong; Byoung Hun Lee; Dong-Seon Lee; Seong-Ju Park; Takhee Lee
We studied GaN-based optoelectronic devices such as light-emitting diodes (LEDs) and solar cells (SCs) with graphene electrodes. A decoration of Au nanoparticles (NPs) on multi-layer graphene films improved the electrical conductivity and modified the work function of the graphene films. The Au NP-decorated graphene film enhanced the current injection and electroluminescence of GaN-based LEDs through low contact resistance and improved the power conversion efficiency of GaN-based SCs through additional light absorption and energy band alignment. Our study will enhance the understanding of the role of Au NP-decorated graphene electrodes for GaN-based optoelectronic device applications.
ACS Nano | 2010
Sang-Ho Lee; Gunho Jo; Woojin Park; Seungkyo Lee; Youn-Su Kim; B. K. Cho; Takhee Lee; Won Bae Kim
A novel and effective methodology to control the diameters of semiconductor nanowires is reported through a versatile contact-printing method for obtaining size-controlled nanocatalysts by size-tunable carbon-based nanometer stamps. Vertically aligned carbon nanopost arrays, derived from nanoporous alumina templates, are used as the nanoscale stamps for printing of catalyst nanoparticles. The diameter of the carbon nanopost can be engineered by adjusting the pore dimension of the templates. Over the contact-printed Au nanodots in a uniform size distribution, semiconductor SnO2 nanowires are grown via a vapor-liquid-solid growth mechanism. Consequently, a direct dimension correspondence is achieved between the carbon nanopost stamp, the printed Au catalyst, and the finally obtained SnO2 nanowires. A model example of the diameter-dependent electrical properties of the semiconductor nanowires is successfully demonstrated in this work by applying three diameter-controlled SnO2 nanowires to nanowire field effect transistors.
Nanotechnology | 2012
Yung Ho Kahng; Sang Chul Lee; Woojin Park; Gunho Jo; Minhyeok Choe; Jong-Hoon Lee; Hyunung Yu; Takhee Lee; Kwanghee Lee
Thermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700 °C. At 800 °C, however, graphene films were etched by catalytic metal nanoparticles, and at 1000 °C many tortuous tubular structures were formed in the film and carbon nanotubes were formed at the film edges and at catalytic metal-contaminated sites. Furthermore, we applied our pristine and thermally treated graphene films as active channels in field-effect transistors and characterized their electrical properties. Our research shows that remnant catalytic metal impurities play a critical role in damaging graphene films at high temperatures in a reducing atmosphere: this damage should be considered in the quality control of large-area graphene films for high temperature applications.