Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Woojong Jang is active.

Publication


Featured researches published by Woojong Jang.


Scientific Reports | 2015

Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species.

Kyung-Hee Kim; Sang Choon Lee; Junki Lee; Yeisoo Yu; Kiwoung Yang; Beom Soon Choi; Hee Jong Koh; Nomar Espinosa Waminal; Hong Il Choi; Nam Hoon Kim; Woojong Jang; Hyun Seung Park; Jonghoon Lee; Hyun Oh Lee; Ho Jun Joh; Hyeon Ju Lee; Jee Young Park; Sampath Perumal; Murukarthick Jayakodi; Yun Sun Lee; Backki Kim; Dario Copetti; Soonok Kim; Sunggil Kim; Ki Byung Lim; Young-Dong Kim; Jungho Lee; Kwang Su Cho; Beom Seok Park; Rod A. Wing

Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis.


Journal of Ginseng Research | 2014

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

Murukarthick Jayakodi; Sang-Choon Lee; H. Park; Woojong Jang; Yun Sun Lee; Beom-Soon Choi; Gyoung Ju Nah; Do-Soon Kim; Senthil Natesan; Chao Sun; Tae-Jin Yang

Background Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results Assemblies were generated from ∼85 million and ∼77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases. We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.


BMC Plant Biology | 2015

Comprehensive analysis of Panax ginseng root transcriptomes

Murukarthick Jayakodi; Sang-Choon Lee; Yun Sun Lee; H. Park; Nam-Hoon Kim; Woojong Jang; Hyun Oh Lee; Ho Jun Joh; Tae-Jin Yang

BackgroundKorean ginseng (Panax ginseng C.A. Meyer) is a highly effective medicinal plant containing ginsenosides with various pharmacological activities, whose roots are produced commercially for crude drugs.ResultsHere, we used the Illumina platform to generate over 232 million RNA sequencing reads from four root samples, including whole roots from one-year-old plants and three types of root tissue from six-year-old plants (i.e., main root bodies, rhizomes, and lateral roots). Through de novo assembly and reference-assisted selection, we obtained a non-redundant unigene set consisting of 55,949 transcripts with an average length of 1,250 bp. Among transcripts in the unigene set, 94 % were functionally annotated via similarity searches against protein databases. Approximately 28.6 % of the transcripts represent novel gene sequences that have not previously been reported for P. ginseng. Digital expression profiling revealed 364 genes showing differential expression patterns among the four root samples. Additionally, 32 were uniquely expressed in one-year-old roots, while seven were uniquely expressed in six-year-old root tissues. We identified 38 transcripts encoding enzymes involved in ginsenoside biosynthesis pathways and 189 encoding UDP-glycosyltransferases.ConclusionOur analysis provides new insights into the role of the root transcriptome in development and secondary metabolite biosynthesis in P. ginseng.


Journal of Ginseng Research | 2014

Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag-simple sequence repeat bands in Panax ginseng Meyer.

Nam-Hoon Kim; Hong-Il Choi; Kyung Hee Kim; Woojong Jang; Tae-Jin Yang

Background Panax ginseng, the most famous medicinal herb, has a highly duplicated genome structure. However, the genome duplication of P. ginseng has not been characterized at the sequence level. Multiple band patterns have been consistently observed during the development of DNA markers using unique sequences in P. ginseng. Methods We compared the sequences of multiple bands derived from unique expressed sequence tag-simple sequence repeat (EST-SSR) markers to investigate the sequence level genome duplication. Results Reamplification and sequencing of the individual bands revealed that, for each marker, two bands around the expected size were genuine amplicons derived from two paralogous loci. In each case, one of the two bands was polymorphic, showing different allelic forms among nine ginseng cultivars, whereas the other band was usually monomorphic. Sequences derived from the two loci showed a high similarity, including the same primer-binding site, but each locus could be distinguished based on SSR number variations and additional single nucleotide polymorphisms (SNPs) or InDels. A locus-specific marker designed from the SNP site between the paralogous loci produced a single band that also showed clear polymorphism among ginseng cultivars. Conclusion Our data imply that the recent genome duplication has resulted in two highly similar paralogous regions in the ginseng genome. The two paralogous sequences could be differentiated by large SSR number variations and one or two additional SNPs or InDels in every 100 bp of genic region, which can serve as a reliable identifier for each locus.


BMC Plant Biology | 2018

Ginseng Genome Database: an open-access platform for genomics of Panax ginseng

Murukarthick Jayakodi; Beom-Soon Choi; Sang-Choon Lee; Nam-Hoon Kim; Jee Young Park; Woojong Jang; Meiyappan Lakshmanan; Shobhana V. G. Mohan; Dong-Yup Lee; Tae-Jin Yang

BackgroundThe ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb.DescriptionThe first draft genome sequences of P. ginseng cultivar “Chunpoong” were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr/, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page.ConclusionThis database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr/.


Mitochondrial DNA | 2015

The complete chloroplast genome sequence of Panax quinquefolius (L.)

Kyung-Hee Kim; Sang-Choon Lee; Junki Lee; Nam-Hoon Kim; Woojong Jang; Tae-Jin Yang

Abstract The complete chloroplast genome sequence of Panax quinquefolius, an important medicinal herb, was generated by de novo assembly with low-coverage whole-genome sequence data and manual correction. A circular 156 088-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 095 bp, a small single copy region of 17 993 bp, and a pair of inverted repeats of 26 000 bp. The chloroplast genome had 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the chloroplast genome revealed that P. quinquefolius is much closer to P. ginseng than P. notoginseng.


Plant Biotechnology Journal | 2018

Genome and evolution of the shade‐requiring medicinal herb Panax ginseng

Nam-Hoon Kim; Murukarthick Jayakodi; Sang-Choon Lee; Beom-Soon Choi; Woojong Jang; Junki Lee; Hyun Hee Kim; Nomar Espinosa Waminal; Meiyappan Lakshmanan; Binh van Nguyen; Yun Sun Lee; H. Park; Hyun Jo Koo; Jee Young Park; Sampath Perumal; Ho Jun Joh; Hana Lee; Jin-Kyung Kim; In Seo Kim; Kyung-Hee Kim; Lokanand Koduru; Kyo Bin Kang; Sang Hyun Sung; Yeisoo Yu; Daniel S. Park; Doil Choi; Eunyoung Seo; Seungill Kim; Young-Chang Kim; Dong Yun Hyun

Summary Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane‐type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome‐scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics‐assisted breeding or metabolic engineering.


Journal of Ginseng Research | 2017

A refined Panax ginseng karyotype based on an ultra-high copy 167-bp tandem repeat and ribosomal DNAs

Nomar Espinosa Waminal; Hong-Il Choi; Nam-Hoon Kim; Woojong Jang; Junki Lee; Jee Young Park; Hyun Hee Kim; Tae-Jin Yang

Background Panax ginseng Meyer (Asian ginseng) has a large nuclear genome size of > 3.5 Gbp in haploid genome equivalent of 24 chromosomes. Tandem repeats (TRs) occupy significant portions of the genome in many plants and are often found in specific genomic loci, making them a valuable molecular cytogenetic tool in discriminating chromosomes. In an effort to understand the P. ginseng genome structure, we characterized an ultrahigh copy 167-bp TR (Pg167TR) and explored its chromosomal distribution as well as its utility for chromosome identification. Methods Polymerase chain reaction amplicons of Pg167TR were labeled, along with 5S and 45S rDNA amplicons, using a direct nick-translation method. Direct fluorescence in situ hybridization (FISH) was used to analyze the chromosomal distribution of Pg167TR. Results Recently, we reported a method of karyotyping the 24 chromosome pairs of P. ginseng using rDNA and DAPI (4′,6-diamidino-2-phenylindole) bands. Here, a unique distribution of Pg167TR in all 24 P. ginseng chromosomes was observed, allowing easy identification of individual homologous chromosomes. Additionally, direct labeling of 5S and 45S rDNA probes allowed the identification of two additional 5S rDNA loci not previously reported, enabling the refinement of the P. ginseng karyotype. Conclusion Identification of individual P. ginseng chromosomes was achieved using Pg167TR-FISH. Chromosome identification is important in understanding the P. ginseng genome structure, and our method will be useful for future integration of genetic linkage maps and genome scaffold anchoring. Additionally, it is a good tool for comparative studies with related species in efforts to understand the evolution of P. ginseng.


Mitochondrial DNA | 2016

The complete chloroplast genome sequence of Cynanchum auriculatum Royle ex Wight (Apocynaceae).

Woojong Jang; Kyu-Yeob Kim; Kyung-Hee Kim; Sang-Choon Lee; H. Park; Junki Lee; Rack Seon Seong; Young Hun Shim; Sang Hyun Sung; Tae-Jin Yang

Abstract Cynanchum auriculatum is a climbing vine belonging to the Apocynaceae family and shows very similar morphology to Cynanchum wilfordii, a medicinal plant. The complete chloroplast genome of C. auriculatum was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. auriculatum was 160 840 bp in length and consisted of four distinct regions, such as large single copy region (91 973 bp), small single copy region (19 667 bp), and a pair of inverted repeat regions (24 600 bp). The overall GC contents of the chloroplast genome were 37.8%. A total of 114 genes were predicted and included 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. auriculatum is most closely related to Cynanchum wilfordii, a medicinal plant.


Journal of Ginseng Research | 2018

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

Van Binh Nguyen; Vo Ngoc Linh Giang; Nomar Espinosa Waminal; H. Park; Nam-Hoon Kim; Woojong Jang; Junki Lee; Tae-Jin Yang

Background Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P.quinquefolius and P.trifolius) from North America and five (P.ginseng, P.notoginseng, P.japonicus, P.vietnamensis, and P.stipuleanatus) from Asia. Methods We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Collaboration


Dive into the Woojong Jang's collaboration.

Top Co-Authors

Avatar

Tae-Jin Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Nam-Hoon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Junki Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Choon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jee Young Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

H. Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ho Jun Joh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hong-Il Choi

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge