Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wook-Jin Chae is active.

Publication


Featured researches published by Wook-Jin Chae.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis

Wook-Jin Chae; Thomas F. Gibson; Daniel Zelterman; Liming Hao; Octavian Henegariu; Alfred L. M. Bothwell

The intrinsic role of endogenous IL-17A in spontaneous intestinal tumorigenesis has not been addressed previously to our knowledge. Ablation of IL-17A significantly reduced tumor development in mice bearing a heterozygote mutation in the adenomatous polyposis coli (APC) gene (ApcMin/+ mice). There was also a decrease in inflammatory cytokines and proinflammatory mediators, reduced infiltration of lymphocytes including T cells, and preservation of intestinal architecture and the presence of APC protein in intestinal epithelial cells. Interestingly, IL-17A ablation also corrected immunological abnormalities such as splenomegaly and thymic atrophy in ApcMin/+ mice. CD4 T cells from ApcMin/+ mice showed hyperproliferative potential in vitro and in vivo and increased levels of IL-17A and IL-10. The effector CD4 T cells from ApcMin/+ mice were more resistant to regulatory T cell–mediated suppression. Finally, these CD4 T cells induced colitis in immunodeficient mice upon adoptive transfer, whereas the ablation of IL-17A in CD4 T cells in ApcMin/+ mice completely abolished this pathogenic potential in vivo. Taken together, our results show that CD4 T cell–derived IL-17A promotes spontaneous intestinal tumorigenesis with altered functions of CD4 T cells in ApcMin/+ mice.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Neuropilin-1 attenuates autoreactivity in experimental autoimmune encephalomyelitis

Benjamin D. Solomon; Cynthia Mueller; Wook-Jin Chae; Leah Alabanza; Margaret S. Bynoe

Neuropilin-1 (Nrp1) is a cell surface molecule originally identified for its role in neuronal development. Recently, Nrp1 has been implicated in several aspects of immune function including maintenance of the immune synapse and development of regulatory T (Treg) cells. In this study, we provide evidence for a central role of Nrp1 in the regulation of CD4 T-cell immune responses in experimental autoimmune encephalitis (EAE). EAE serves as an animal model for the central nervous system (CNS) inflammatory disorder multiple sclerosis (MS). EAE is mediated primarily by CD4+ T cells that migrate to the CNS and mount an inflammatory attack against myelin components, resulting in CNS pathology. Using a tissue-specific deletion system, we observed that the lack of Nrp1 on CD4+ T cells results in increased EAE severity. These conditional knockout mice exhibit preferential TH-17 lineage commitment and decreased Treg-cell functionality. Conversely, CD4+ T cells expressing Nrp1 suppress effector T-cell proliferation and cytokine production both in vivo and in vitro independent of Treg cells. Nrp1-mediated suppression can be inhibited by TGF-β blockade but not by IL-10 blockade. These results suggest that Nrp1 is essential for proper maintenance of peripheral tolerance and its absence can result in unchecked autoreactive responses, leading to diseases like EAE and potentially MS.


Critical Reviews in Biochemistry and Molecular Biology | 2014

Interplay between DNA repair and inflammation, and the link to cancer

Dawit Kidane; Wook-Jin Chae; Jennifer Czochor; Kristin A. Eckert; Peter M. Glazer; Alfred L. M. Bothwell; Joann B. Sweasy

Abstract DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction

Jae-Hyuck Shim; Heung-Kyu Lee; Eun-Ju Chang; Wook-Jin Chae; Jin-Hwan Han; Duck-Jong Han; Tomohiro Morio; Jung-Jin Yang; Alfred L. M. Bothwell; Sang-Kyou Lee

Tautomycetin (TMC) was identified as an immunosuppressor of activated T cells. Inhibition of T cell proliferation with TMC was observed at concentrations 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A (CsA). TMC specifically blocked tyrosine phosphorylation of intracellular signal mediators downstream of Src tyrosine kinases in a T cell-specific manner, leading to apoptosis due to cleavage of Bcl-2, caspase-9, caspase-3, and poly(ADP-ribose) polymerase, but not caspase-1. In TMC-treated rats that received a heterotopic cardiac allograft, the graft survived more than 160 days, comparable to graft survival in allografted rats treated with CsA. Thus, TMC, whose mechanism of action is different from that of CsA or FK506, can be used as a potent T cell-specific immunosuppressor.


Brain Behavior and Immunity | 2010

Elevated expression of MCP-1, IL-2 and PTPR-N in basal ganglia of Tourette syndrome cases

Astrid Morer; Wook-Jin Chae; Octavian Henegariu; Alfred L. M. Bothwell; James F. Leckman; Ivana Kawikova

BACKGROUND Post-infectious autoimmunity has been implicated in pathogenesis of Tourettes syndrome (TS) but no evidence of inflammation in central nervous system has been reported yet. We evaluated the expression of genes encoding selected inflammatory factors in post-mortem specimen of adult TS patients: interferon-γ (a cytokine released from CD8 and Thelper 1 CD4 subset of T lymphocytes), interleukin-2 (IL-2, a growth factor derived from T lymphocytes), interleukin-1 β (a cytokine involved in initiation of inflammation), monocyte chemotactic factor -1 (MCP-1, a marker of chronic inflammation) and CD45 (pan-leukocytic marker). For validation purposes, we determined expression of three genes that were previously reported to be elevated in post-mortem specimen of other TS cases: protein tyrosine phosphatase receptor-N (PTPR-N), PTPR-U and recoverin. METHODS Total RNA was isolated from formalin fixed brain tissue sections of basal ganglia area from four patients with TS and four control subjects, and real-time reverse transcription-polymerase chain reaction analysis was employed to quantitatively evaluate gene expression of the selected genes. RESULTS Significantly increased expression of MCP-1, IL-2 and PTPR-N was observed in TS cases (6.5-fold, 2.3-fold and 16.1-fold increase, respectively, p<0.05). CONCLUSIONS Elevated expression of MCP-1 and IL-2 supports the possibility of chronic inflammatory processes in the basal ganglia. Replication of elevated expression of PTPR-N in TS specimen suggests that pathway(s) involving this molecule may be important in TS pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cell-permeable Foxp3 protein alleviates autoimmune disease associated with inflammatory bowel disease and allergic airway inflammation

Je Min Choi; Jae Hun Shin; Myung Hyun Sohn; Martha J. Harding; Jong Hyun Park; Zuzana Tobiasova; Da Young Kim; Stephen E. Maher; Wook-Jin Chae; Sung Ho Park; Chun Geun Lee; Sang Kyou Lee; Alfred L. M. Bothwell

Foxp3 is a key transcription factor for differentiation and function of regulatory T (Treg) cells that is critical for maintaining immunological self-tolerance. Therefore, increasing Treg function by Foxp3 transduction to regulate an inflammatory immune response is an important goal for the treatment of autoimmune and allergic diseases. Here we have generated a cell-permeable Foxp3 protein by fusion with the unique human HHph-1-PTD (protein transduction domain), examined its regulatory function in T cells, and characterized its therapeutic effect in autoimmune and allergic disease models. HHph-1-Foxp3 was rapidly and effectively transduced into cells within 30 min and conferred suppressor function to CD4+CD25− T cells as well as directly inhibiting T-cell activation and proliferation. Systemic delivery of HHph-1 Foxp3 remarkably inhibited the autoimmune symptoms of scurfy mice and the development of colitis induced by scurfy or wild-type CD4 T cells. Moreover, intranasal delivery of HHph-1-Foxp3 strongly suppressed ovalbumin-induced allergic airway inflammation. These results demonstrate the clinical potential of the cell-permeable recombinant HHph-1-Foxp3 protein in autoimmune and hypersensitive allergic diseases.


Biochemical and Biophysical Research Communications | 2011

IL-17F deficiency inhibits small intestinal tumorigenesis in ApcMin/+ mice.

Wook-Jin Chae; Alfred L. M. Bothwell

IL-17 plays an important role in gut homeostasis. However, the role of IL-17F in intestinal tumorigenesis has not been addressed. Here we demonstrate that ablation of IL-17F significantly inhibits spontaneous intestinal tumorigenesis in the small intestine of Apc(Min/+) mice. IL-17F ablation decreased IL-1β and Cox-2 expression as well as IL-17 receptor C (IL-17RC) expression, which were increased in tumors from Apc(Min/+) mice. Lack of IL-17F did not reverse the splenomegaly but partially restored thymic atrophy, suggesting a local effect of IL-17F in the intestine. IL-17F deficient Apc(Min/+) mice showed a significant decrease in immune cell infiltration in the lamina propria. Interestingly, the expression of IL-17A from CD4 T cells in the lamina propria remains unchanged in the absence of IL-17F. Collectively, our results suggest the proinflammatory and essential role of IL-17F to develop spontaneous intestinal tumorigenesis in Apc(Min/+) mice in the presence of IL-17A.


Biomaterials | 2012

Alleviation of rheumatoid arthritis by cell-transducible methotrexate upon transcutaneous delivery

Sang Won Lee; Ji-Hye Kim; Min-Chan Park; Yong-Beom Park; Wook-Jin Chae; Tomohiro Morio; Dong-Ho Lee; Sang-Hwa Yang; Seung-Kyou Lee; Soo-Kon Lee; Sang-Kyou Lee

Rheumatoid arthritis (RA) is a systemic autoimmune disease that is initiated and maintained by various inflammatory/immune cells and their cytokines, leading to cartilage degradation and bone erosion. Despite its potent therapeutic efficacy on RA, the oral administration of methotrexate (MTX) provokes serious adverse systemic complications, thus necessitating the local application of MTX. Here, we show that transcutaneous MTX (TC-MTX) can efficiently penetrate joint skin ex vivo and in vivo, and that TC-MTX can significantly improve the various inflammatory symptoms associated with RA. Further, TC-MTX preserved the joint-structures in mice with collagen-induced arthritis (CIA), which was also confirmed by three-dimensional micro-computed tomography scan. TC-MTX markedly decreased the secretion of inflammatory cytokines both in the serum and in inflamed joints of CIA mice. Further, its therapeutic potential is comparable to that of etanercept, a biological agent that block tumor necrosis factor (TNF)-α. Importantly, the systemic cytotoxicity of TC-MTX was not detected. Thus, TC-MTX can be a new therapeutic modality for RA patients without systemic complications.


Transplantation | 2007

Regulatory transplantation tolerance and "stemness": evidence that Foxp3 may play a regulatory role in SOCS-3 gene transcription.

Poorni Muthukumarana; Wook-Jin Chae; Stephen E. Maher; Bruce R. Rosengard; Alfred L. M. Bothwell; Su M. Metcalfe

Immune self-tolerance is controlled by a subset of T lymphocytes that are regulatory (Treg) and epigenetically programmed to suppress autoreactive immune effector cells in vivo. Treg require expression of Foxp3, a transcription factor that not only represses the interleukin-2 gene promoter, but also sequesters key mediators of T-cell signal transduction by complexing with cytoplasmic NFAT and NF&kgr;B. We have discovered that expression of Foxp3 is linked to two stem cell-related factors, namely leukemia inhibitory factor (LIF) and axotrophin. Because both LIF and axotrophin each influence Foxp3, we now ask if reciprocal cross-talk occurs; for example, does Foxp3 in turn influence LIF and/or axotrophin? We compared the effect of wt-Foxp3 versus mutant &Dgr;E251-Foxp3, which lacks transcriptional activity, on transcript levels of axotrophin, LIF, and suppressor of cytokine signaling–3 (SOCS-3; a feedback inhibitor of LIF) in the Jurkat human T-cell line. Unexpectedly, a 50-fold increase in SOCS-3 transcripts occurred in the &Dgr;E251-Foxp3 cells, coincident with a dramatic decrease in LIF transcription. This implies that, either directly or indirectly, transcription of SOCS-3 is negatively regulated by wt-Foxp3. Suppression of SOCS-3 by Foxp3 would support a model wherein Foxp3 promotes LIF signaling in Treg and is further evidence of reciprocity between Foxp3, LIF, and axotrophin.


Journal of Child and Adolescent Psychopharmacology | 2011

Risperidone-related improvement of irritability in children with autism is not associated with changes in serum of epidermal growth factor and interleukin-13

Zuzana Tobiasova; Klaas H. B. van der Lingen; Lawrence Scahill; James F. Leckman; Yan Zhang; Wook-Jin Chae; James T. McCracken; Christopher J. McDougle; Benedetto Vitiello; Elaine Tierney; Michael G. Aman; L. Eugene Arnold; Liliya Katsovich; Pieter J. Hoekstra; Fred R. Volkmar; Alfred L. M. Bothwell; Ivana Kawikova

Risperidone has been shown to improve serious behavioral problems in children with autism. Here we asked whether risperidone-associated improvement was related to changes in concentrations of inflammatory molecules in the serum of these subjects. Seven molecules were identified as worthy of further assessment by performing a pilot analysis of 31 inflammatory markers in 21 medication-free subjects with autism versus 15 healthy controls: epidermal growth factor (EGF), interferon-γ (IFN-γ), interleukin (IL)-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), IL-1 and IL-1-receptor antagonist. Serum concentrations of these markers were then established in a different set of subjects that participated in a double-blind, clinical trial and an expanded group of healthy subjects. In the first analysis, samples obtained from subjects with autism at baseline visits were compared to visits after 8-week treatment with placebo (n=37) or risperidone (n=40). The cytokine concentrations remained stable over the 8-week period for both risperidone and placebo groups. In the second analysis, we explored further the differences between medication-free subjects with autism (n=77) and healthy controls (recruited independently; n=19). Serum levels of EGF were elevated in subjects with autism (median=103 pg/mL, n=75) in comparison to healthy controls (75 pg/mL, n=19; p<0.05), and levels of IL-13 were decreased in autism (median=0.8 pg/mL, n=77) in comparison to controls (9.8 pg/mL, n=19; p=0.0003). These changes did not correlate with standardized measures used for a diagnosis of autism. In summary, risperidone-induced clinical improvement in subjects with autism was not associated with changes in the serum inflammatory markers measured. Whether altered levels of EGF and IL-13 play a role in the pathogenesis or phenotype of autism requires further investigation.

Collaboration


Dive into the Wook-Jin Chae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Mueller

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge