Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter van Rheenen is active.

Publication


Featured researches published by Wouter van Rheenen.


Human Molecular Genetics | 2012

Evidence for an oligogenic basis of amyotrophic lateral sclerosis

Marka van Blitterswijk; Michael A. van Es; Eric A.M. Hennekam; Dennis Dooijes; Wouter van Rheenen; Jelena Medic; Pierre R. Bourque; Helenius J. Schelhaas; Anneke J. van der Kooi; Marianne de Visser; Paul I. W. de Bakker; Jan H. Veldink; Leonard H. van den Berg

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a substantial heritable component. In pedigrees affected by its familial form, incomplete penetrance is often observed. We hypothesized that this could be caused by a complex inheritance of risk variants in multiple genes. Therefore, we screened 111 familial ALS (FALS) patients from 97 families, and large cohorts of sporadic ALS (SALS) patients and control subjects for mutations in TAR DNA-binding protein (TARDBP), fused in sarcoma/translated in liposarcoma (FUS/TLS), superoxide dismutase-1 (SOD1), angiogenin (ANG) and chromosome 9 open reading frame 72 (C9orf72). Mutations were identified in 48% of FALS families, 8% of SALS patients and 0.5% of control subjects. In five of the FALS families, we identified multiple mutations in ALS-associated genes. We detected FUS/TLS and TARDBP mutations in combination with ANG mutations, and C9orf72 repeat expansions with TARDBP, SOD1 and FUS/TLS mutations. Statistical analysis demonstrated that the presence of multiple mutations in FALS is in excess of what is to be expected by chance (P = 1.57 × 10(-7)). The most compelling evidence for an oligogenic basis was found in individuals with a p.N352S mutation in TARDBP, detected in five FALS families and three apparently SALS patients. Genealogical and haplotype analyses revealed that these individuals shared a common ancestor. We obtained DNA of 14 patients with this TARDBP mutation, 50% of whom had an additional mutation (ANG, C9orf72 or homozygous TARDBP). Hereby, we provide evidence for an oligogenic aetiology of ALS. This may have important implications for the interpretation of whole exome/genome experiments designed to identify new ALS-associated genes and for genetic counselling, especially of unaffected family members.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.


Alzheimers & Dementia | 2015

The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease

Christina M. Lill; Aina Rengmark; Lasse Pihlstrøm; Isabella Fogh; Aleksey Shatunov; Patrick Sleiman; Li-San Wang; Tian Liu; Christina Funch Lassen; Esther Meissner; Panos Alexopoulos; Andrea Calvo; Adriano Chiò; Nil Dizdar; Frank Faltraco; Lars Forsgren; Julia Kirchheiner; Alexander Kurz; Jan Petter Larsen; Maria Liebsch; Jan Linder; Karen E. Morrison; Hans Nissbrandt; Markus Otto; Jens Pahnke; Amanda Partch; Gabriella Restagno; Dan Rujescu; Cathrin Schnack; Christopher Shaw

A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimers disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinsons disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta‐analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Aβ42) and total‐tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 × 10−25). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR = 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR = 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF‐total‐tau (P = .0110) but not Aβ42 suggesting that TREM2s role in AD may involve tau dysfunction.


Neurology | 2012

Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseases

Wouter van Rheenen; Marka van Blitterswijk; Mark H.B. Huisman; Lotte Vlam; Perry T.C. van Doormaal; Meinie Seelen; Jelena Medic; Dennis Dooijes; Marianne de Visser; Anneke J. van der Kooi; Joost Raaphorst; Helenius J. Schelhaas; W. Ludo van der Pol; Jan H. Veldink; Leonard H. van den Berg

Objective: To assess the frequency and phenotype of hexanucleotide repeat expansions in C9ORF72 in a large cohort of patients of Dutch descent with familial (fALS) and sporadic (sALS) amyotrophic lateral sclerosis (ALS), progressive muscular atrophy (PMA), and primary lateral sclerosis (PLS). Methods: Included were 78 patients with fALS, 1,422 with sALS, 246 with PMA, and 110 with PLS, and 768 control subjects. Repeat expansions were determined by a repeat primed PCR. Familial aggregation of dementia and Parkinson disease (PD) was examined among patients with ALS who carried the repeat expansion. Results: The expanded repeat was found in 33 (37%) of all patients with fALS, in 87 (6.1%) patients with sALS, in 4 (1.6%) patients with PMA, and in 1 (0.9%) patient with PLS. None of the controls carried the mutation. Patients with ALS with the repeat expansion had an earlier age at onset (median 59.3 vs 61.9 years, hazard ratio 1.55, p = 5 × 10−5) and shorter survival (median 2.5 vs 2.7 years, hazard ratio 1.46, p = 8 × 10−4). Dementia, but not PD, occurred nearly twice as often in relatives of patients with the expansion compared to all patients with ALS or controls (p = 9 × 10−4). Conclusions: The hexanucleotide repeat expansion in C9ORF72 is a major cause of fALS and apparently sporadic ALS in the Netherlands. Patients who carry the repeat expansion have an earlier onset, shorter survival, and familial aggregation of dementia. These results challenge the classic definition of fALS and may justify genetic testing in patients with sALS.


Journal of Medical Genetics | 2014

A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories

Chizuru Akimoto; A. Volk; Marka van Blitterswijk; Marleen Van den Broeck; Claire S. Leblond; Serge Lumbroso; William Camu; Birgit Neitzel; Osamu Onodera; Wouter van Rheenen; Susana Pinto; Markus Weber; Bradley Smith; Melanie Proven; Kevin Talbot; Pamela Keagle; Alessandra Chesi; Antonia Ratti; Julie van der Zee; Helena Alstermark; Anna Birve; Daniela Calini; Angelica Nordin; Daniela C Tradowsky; Walter Just; Hussein Daoud; Sabrina Angerbauer; Mariely DeJesus-Hernandez; Takuya Konno; Anjali Lloyd-Jani

Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.


Nature Genetics | 2015

Population genetic differentiation of height and body mass index across Europe

Matthew R. Robinson; Gibran Hemani; Carolina Medina-Gomez; Massimo Mezzavilla; Tonu Esko; Konstantin Shakhbazov; Joseph E. Powell; Anna A. E. Vinkhuyzen; Sonja I. Berndt; Stefan Gustafsson; Anne E. Justice; Bratati Kahali; Adam E. Locke; Tune H. Pers; Sailaja Vedantam; Andrew R. Wood; Wouter van Rheenen; Ole A. Andreassen; Paolo Gasparini; Andres Metspalu; Leonard H. van den Berg; Jan H. Veldink; Fernando Rivadeneira; Thomas Werge; Gonçalo R. Abecasis; Dorret I. Boomsma; Daniel I. Chasman; Eco J. C. de Geus; Timothy M. Frayling; Joel N. Hirschhorn

Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10−8; BMI, P < 5.95 × 10−4), and we find an among-population genetic correlation for tall and slender individuals (r = −0.80, 95% CI = −0.95, −0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).


Nature Genetics | 2016

NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

Kevin Kenna; Perry T.C. van Doormaal; Annelot M. Dekker; Nicola Ticozzi; Brendan J. Kenna; Frank P. Diekstra; Wouter van Rheenen; Kristel R. van Eijk; Ashley Jones; Pamela Keagle; Aleksey Shatunov; William Sproviero; Bradley Smith; Michael A. van Es; Simon Topp; Aoife Kenna; John Miller; Claudia Fallini; Cinzia Tiloca; Russell McLaughlin; Caroline Vance; Claire Troakes; Claudia Colombrita; Gabriele Mora; Andrea Calvo; Federico Verde; Safa Al-Sarraj; Andrew King; Daniela Calini; Jacqueline de Belleroche

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.


Neurobiology of Aging | 2012

VAPB and C9orf72 mutations in 1 familial amyotrophic lateral sclerosis patient

Marka van Blitterswijk; Michael A. van Es; Max Koppers; Wouter van Rheenen; Jelena Medic; Helenius J. Schelhaas; Anneke J. van der Kooi; Marianne de Visser; Jan H. Veldink; Leonard H. van den Berg

Previously, we have reported amyotrophic lateral sclerosis (ALS) families with multiple mutations in major ALS-associated genes. These findings provided evidence for an oligogenic basis of ALS. In our present study, we screened a cohort of 755 sporadic ALS patients, 111 familial ALS patients (97 families), and 765 control subjects of Dutch descent for mutations in vesicle-associated membrane protein B (VAPB). We have identified 1 novel VAPB mutation (p.V234I) in a familial ALS patient known to have a chromosome 9 open reading frame 72 (C9orf72) repeat expansion. This p.V234I mutation was absent in control subjects, located in a region with high evolutionary conservation, and predicted to have damaging effects. Taken together, these findings provide additional evidence for an oligogenic basis of ALS.


Neurobiology of Aging | 2012

UNC13A is a modifier of survival in amyotrophic lateral sclerosis

Frank P. Diekstra; Paul W.J. van Vught; Wouter van Rheenen; Max Koppers; R. Jeroen Pasterkamp; Michael A. van Es; Helenius J. Schelhaas; Marianne de Visser; Wim Robberecht; Philip Van Damme; Peter Andersen; Leonard H. van den Berg; Jan H. Veldink

A large genome-wide screen in patients with sporadic amyotrophic lateral sclerosis (ALS) showed that the common variant rs12608932 in gene UNC13A was associated with disease susceptibility. UNC13A regulates the release of neurotransmitters, including glutamate. Genetic risk factors that, in addition, modify survival, provide promising therapeutic targets in ALS, a disease whose etiology remains largely elusive. We examined whether UNC13A was associated with survival of ALS patients in a cohort of 450 sporadic ALS patients and 524 unaffected controls from a population-based study of ALS in The Netherlands. Additionally, survival data were collected from individuals of Dutch, Belgian, or Swedish descent (1767 cases, 1817 controls) who had participated in a previously published genome-wide association study of ALS. We related survival to rs12608932 genotype. In both cohorts, the minor allele of rs12608932 in UNC13A was not only associated with susceptibility but also with shorter survival of ALS patients. Our results further corroborate the role of UNC13A in ALS pathogenesis.


Human Molecular Genetics | 2010

A large genome scan for rare CNVs in amyotrophic lateral sclerosis

Hylke M. Blauw; Ammar Al-Chalabi; Peter Andersen; Paul W.J. van Vught; Frank P. Diekstra; Michael A. van Es; Christiaan G.J. Saris; Ewout J.N. Groen; Wouter van Rheenen; Max Koppers; Ruben van 't Slot; Eric Strengman; Karol Estrada; Fernando Rivadeneira; Albert Hofman; André G. Uitterlinden; Lambertus A. Kiemeney; Sita H. Vermeulen; Anna Birve; Stefan Waibel; Thomas Meyer; Simon Cronin; Russell McLaughlin; Orla Hardiman; Peter C. Sapp; Martin D. Tobin; Louise V. Wain; Barbara Tomik; Agnieszka Slowik; Robin Lemmens

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.

Collaboration


Dive into the Wouter van Rheenen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge