Wujun Fu
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wujun Fu.
Journal of the American Chemical Society | 2008
Tianming Zuo; Liaosa Xu; Christine M. Beavers; M. M. Olmstead; Wujun Fu; Crawford Td; Alan L. Balch; Harry C. Dorn
Y2@C79N and Tb2@C79N have been prepared by conducting the Kratschmer-Huffman electric-arc process under 20 Torr of N2 and 280 Torr of He with metal oxide-doped graphite rods. These new heterofullerenes were separated from the resulting mixture of empty cage fullerenes and endohedral fullerenes by chemical separation and a two-stage chromatographic process. Crystallographic data for Tb2@C79N x Ni(OEP) x 2 C6H6 demonstrate the presence of an 80-atom cage with idealized I(h) symmetry and two, widely separated Tb atoms inside with a Tb-Tb separation of 3.9020(10) A for the major terbium sites. The EPR spectrum of the odd-electron Y2@C79N indicates that the spin density largely resides on the two equivalent yttrium ions. Computational studies on Y2@C79N suggest that the nitrogen atom resides at a 665 ring junction in the equator on the fullerene cage and that the unpaired electron is localized in a bonding orbital between the two yttrium ions of this stable radical. Thus, the Tb-Tb bond length of the single-electron bond is an exceedingly long metal-metal bond.
Journal of the American Chemical Society | 2011
Wujun Fu; Jianyuan Zhang; Tim Fuhrer; Hunter Champion; Ko Furukawa; Tatsuhisa Kato; James E. Mahaney; Brian Burke; Keith A. Williams; Kenneth Walker; Caitlyn Dixon; Jiechao Ge; Chunying Shu; Kim Harich; Harry C. Dorn
The dimetallic endohedral heterofullerene (EHF), Gd(2)@C(79)N, was prepared and isolated in a relatively high yield when compared with the earlier reported heterofullerene, Y(2)@C(79)N. Computational (DFT), chemical reactivity, Raman, and electrochemical studies all suggest that the purified Gd(2)@C(79)N, with the heterofullerene cage, (C(79)N)(5-) has comparable stability with other better known isoelectronic metallofullerene (C(80))(6-) cage species (e.g., Gd(3)N@C(80)). These results describe an exceptionally stable paramagnetic molecule with low chemical reactivity with the unpaired electron spin density localized on the internal diatomic gadolinium cluster and not on the heterofullerene cage. EPR studies confirm that the spin state of Gd(2)@C(79)N is characterized by a half-integer spin quantum number of S = 15/2. The spin (S = ½) on the N atom of the fullerene cage and two octet spins (S = 7/2) of two encapsulated gadoliniums are coupled with each other in a ferromagnetic manner with a small zero-field splitting parameter D. Because the central line of Gd(2)@C(79)N is due to the Kramers doublet with a half-integer spin quantum number of S = 15/2, this relatively sharp line is prominent and the anisotropic nature of the line is weak. Interestingly, in contrast with most Gd(3+) ion environments, the central EPR line (g = 1.978) is observable even at room temperature in a toluene solution. Finally, we report the first EHF derivative, a diethyl bromomalonate monoadduct of Gd(2)@C(79)N, which was prepared and isolated via a modified Bingel-Hirsch reaction.
Journal of the American Chemical Society | 2009
Wujun Fu; Liaosa Xu; Hugo F. Azurmendi; Jiechao Ge; Tim Fuhrer; Tianming Zuo; Jonathan Reid; Chunying Shu; Kim Harich; Harry C. Dorn
The members of a new family of yttrium trimetallic nitride-templated (TNT) endohedral metallofullerenes (EMFs), Y(3)N@C(2n) (n = 40-43), have been synthesized and purified. On the basis of experimental and computational (13)C NMR studies, we propose cage structures for Y(3)N@I(h)-C(80) (IPR allowed), Y(3)N@D(5h)-C(80) (IPR allowed), Y(3)N@C(s)-C(82) (non-IPR), Y(3)N@C(s)-C(84) (non-IPR), and Y(3)N@D(3)-C(86) (IPR allowed). A significant result is the limited number of isomers found for each carbon cage. For example, there are 24 isolated pentagon rule (IPR) and 51 568 non-IPR structures possible for the C(84) cage, but only one major isomer of Y(3)N@C(s)-C(84) was found. The current study confirms the unique role of the trimetallic nitride (M(3)N)(6+) cluster template in the Kratschmer-Huffman electric-arc process for fullerene cage size and high symmetry isomer selectivity. This study reports the first (89)Y NMR results for Y(3)N@I(h)-C(80,) Y(3)N@C(s)(51365)-C(84), and Y(3)N@D(3)(19)-C(86), which reveal a progression from isotropic to restricted (Y(3)N)(6+) cluster motional processes. Even more surprising is the sensitivity of the (89)Y NMR chemical shift parameter to subtle changes in the electronic environment at each yttrium nuclide in the (Y(3)N)(6+) cluster (more than 200 ppm for these EMFs). This (89)Y NMR study suggests that (89)Y NMR will evolve as a powerful tool for cluster motional studies of EMFs.
Journal of the American Chemical Society | 2008
Chunying Shu; Carla Slebodnick; Liaosa Xu; Hunter Champion; Tim Fuhrer; Ting Cai; Jonathan Reid; Wujun Fu; Kim Harich; Harry C. Dorn; Harry W. Gibson
Photochemically generated benzyl radicals react with Sc(3)N@C(80)-I(h) to produce a dibenzyl adduct [Sc(3)N@C(80)(CH(2)C(6)H(5))(2)] in 82% yield and high regioselectivity. The adducts (1)H spectrum revealed high symmetry: only one AB pattern was observed for the methylene protons. The (13)C NMR spectrum suggested a C(2)-symmetrical structure. DFT calculations reveal that a 1,4-adduct is more favorable than a 1,2-adduct by >10 kcal/mol. The 1,4-structure on [566] ring junctions was unambiguously confirmed by X-ray crystallographic analysis. UV-vis spectra revealed that the removal of two p orbitals from the pi system of the cage together with the benzylic substituents change the electronic properties of the metallofullerene in a manner similar to those reported for disilirane and trifluoromethyl moieties. Under the same conditions from Lu(3)N@C(80)-I(h) we prepared (63% yield) Lu(3)N@C(80)(CH(2)C(6)H(5))(2), which demonstrated properties similar to the 1,4-dibenzyl adduct of Sc(3)N@C(80)-I(h).
Organic Letters | 2009
Chunying Shu; Wei Xu; Carla Slebodnick; Hunter Champion; Wujun Fu; Jonathan Reid; Hugo F. Azurmendi; Chunru Wang; Kim Harich; Harry C. Dorn; Harry W. Gibson
Two new 6,6-open phenyl-C(81)-butyric acid methyl ester metallofulleroids, M(3)N@C(80)PCBM (M = Sc, Y), were synthesized by diazoalkane addition reactions and fully characterized. The results demonstrate that the reactive sites are the same for M(3)N@C(80) (M = Sc, Y) but dramatically different from that of C(60).
Journal of the American Chemical Society | 2013
Jianyuan Zhang; Daniel W. Bearden; Tim Fuhrer; Liaosa Xu; Wujun Fu; Tianming Zuo; Harry C. Dorn
Although not found to date in empty-cage fullerenes, the fused pentagon motifs (pentalenes) are allowed in endohedral metallofullerenes (EMFs). We have found that members of the trimetallic nitride template (TNT) EMF Y3N@C2n (n = 39-44) family that contain pentalene motifs exhibit significant dipole moments. This finding is predicted to be significant for other EMFs with a metal atom orientated toward the pentalene motif. Chromatographic retention data and computational results for Y3N@C2-C78, Y3N@Cs-C82, and Y3N@Cs-C84 are examples that pentalene groups lead to a significant induced dipole moment (∼1D). A special case is the Y3N@C2-C78 that contains two pentalenes in a relatively small cage. The (13)C NMR spectrum for Y3N@C2-C78 exhibits strongly deshielded signals for the fullerene cage (155-170 ppm) supporting the presence of the pentalene motif. In addition, a lengthening of the covalent M-N bond in the internal M3N cluster is found for all reported TNT EMFs that contain one or two pentalene motifs.
Inorganic Chemistry | 2011
Wujun Fu; Jianyuan Zhang; Hunter Champion; Tim Fuhrer; Hugo Azuremendi; Tianming Zuo; Jianfei Zhang; Kim Harich; Harry C. Dorn
In this paper, we report the synthesis, purification, (13)C NMR, and other characterization studies of Y(3)N@C(88). The (13)C NMR, UV-vis, and chromatographic data suggest an Y(3)N@C(88) having an IPR-allowed cage with D(2)(35)-C(88) symmetry. In earlier density functional theory (DFT) computational and X-ray crystallographic studies, it was reported that lanthanide (A(3)N)(6+) clusters are stabilized in D(2)(35)-C(88) symmetry cages and have reduced HOMO-LUMO gaps relative to other trimetallic nitride endohedral metallofullerene cage systems, for example, A(3)N@C(80). In this paper, we report that the nonlanthanide (Y(3)N)(6+) cluster in the D(2)(35)-C(88) cage exhibits a HOMO-LUMO gap consistent with other lanthanide A(3)N@C(88) molecules based on electrochemical measurements and DFT computational studies. These results suggest that the reduced HOMO-LUMO gap of A(3)N@C(88) systems is a property dominated by the D(2)(35)-C(88) carbon cage and not f-orbital lanthanide electronic metal cluster (A(3)N)(6+) orbital participation.
Physical Review B | 2010
Brian Burke; Jack Chan; Keith A. Williams; Jiechao Ge; Chunying Shu; Wujun Fu; Harry C. Dorn; James G. Kushmerick; Alexander A. Puretzky; David B. Geohegan
The structure and vibrational spectrum of Gd3N@C80 is studied through Raman and inelastic electron tunneling spectroscopy as well as density-functional theory and universal force eld calculations. Hindered rotations, shown by both theory and experiment, indicate the formation of a Gd3N-C80 bond which reduces the ideal icosahedral symmetry of the C80 cage. The vibrational modes involving the movement of the encapsulated species are a ngerprint of the interaction between the fullerene cage and the core complex. We present Raman data for the Gd3N@C2n 40 n 44 family as well as Y3N@C80, Lu3N@C80, and Y3N@C88 for comparison. Conductance measurements have been performed on Gd3N@C80 and reveal a Kondo effect similar to that observed in C60.
Chemical Communications | 2011
Wujun Fu; Xuelei Wang; Hugo Azuremendi; Jianyuan Zhang; Harry C. Dorn
The dynamics of the trimetallic nitride (M(3)N)(6+) (M = Sc, Y and Lu) clusters in the I(h)-(C(80))(6-) cage have been studied by (14)N and (45)Sc nuclear magnetic resonance. These NMR studies suggest that the motional barrier of (M(3)N)(6+) is related to the cluster size and increases in the series (Sc, Y, and Lu).
Journal of the American Chemical Society | 2012
Jianyuan Zhang; Tim Fuhrer; Wujun Fu; Jiechao Ge; Daniel W. Bearden; J. L. Dallas; James C. Duchamp; Kenneth Walker; Hunter Champion; Hugo F. Azurmendi; Kim Harich; Harry C. Dorn