Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wynne Aherne is active.

Publication


Featured researches published by Wynne Aherne.


Cancer Research | 2008

NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis

Suzanne A. Eccles; Andrew Massey; Florence I. Raynaud; Swee Y. Sharp; Gary Box; Melanie Valenti; Lisa Patterson; Alexis de Haven Brandon; Sharon Gowan; Frances E. Boxall; Wynne Aherne; Martin G. Rowlands; Angela Hayes; Vanessa Martins; Frederique Urban; Kathy Boxall; Chrisostomos Prodromou; Laurence H. Pearl; Karen B. James; Thomas P. Matthews; Kwai-Ming Cheung; Andrew Kalusa; Keith Jones; Edward McDonald; Xavier Barril; Paul Brough; Julie E. Cansfield; Brian W. Dymock; Martin J. Drysdale; Harry Finch

We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials.


Clinical Cancer Research | 2011

A Phase I Study of the Heat Shock Protein 90 Inhibitor Alvespimycin (17-DMAG) Given Intravenously to Patients with Advanced Solid Tumors

Simon Pacey; Richard Wilson; Michael I. Walton; Martin Eatock; Anthea Hardcastle; Anna Zetterlund; Hendrik-Tobias Arkenau; Javier Moreno-Farre; Udai Banerji; Belle Roels; Heidi Peachey; Wynne Aherne; Johann S. de Bono; Florence I. Raynaud; Paul Workman; Ian Judson

Purpose: A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED). Patients and Methods: Patients with advanced solid cancers were treated with weekly, intravenous (i.v.) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which ≤1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual. Results: Twenty-five patients received 17-DMAG (range 2.5–106 mg/m2). At 106 mg/m2 of 17-DMAG 2/4 patients experienced DLT, including one treatment-related death. No DLT occurred at 80 mg/m2. Common adverse events were gastrointestinal, liver function changes, and ocular. Area under the curve and mean peak concentration increased proportionally with 17-DMAG doses 80 mg/m2 or less. In peripheral blood mononuclear cells significant (P < 0.05) HSP72 induction was detected (≥20 mg/m2) and sustained for 96 hours (≥40 mg/m2). Plasma HSP72 levels were greatest in the two patients who experienced DLT. At 80 mg/m2 client protein (CDK4, LCK) depletion was detected and tumor samples from 3 of 5 patients confirmed HSP90 inhibition. Clinical activity included complete response (castration refractory prostate cancer, CRPC 124 weeks), partial response (melanoma, 159 weeks), and stable disease (chondrosarcoma, CRPC, and renal cancer for 28, 59, and 76 weeks, respectively). Couclusions: The recommended phase II dose of 17-DMAG is 80 mg/m2 weekly i.v. Clin Cancer Res; 17(6); 1561–70. ©2011 AACR.


Cancer Research | 2005

Identification of Novel Small Molecule Inhibitors of Hypoxia-Inducible Factor-1 That Differentially Block Hypoxia-Inducible Factor-1 Activity and Hypoxia-Inducible Factor-1α Induction in Response to Hypoxic Stress and Growth Factors

Noan-Minh Chau; Paul M. Rogers; Wynne Aherne; Veronica A. Carroll; Ian Collins; Edward McDonald; Paul Workman; Margaret Ashcroft

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional complex that is activated in response to hypoxia and growth factors. HIF-1 plays a central role in tumor progression, invasion, and metastasis. Overexpression of the HIF-1alpha subunit has been observed in many human cancers and is associated with a poor prognostic outcome with conventional treatments. Targeting HIF-1 using novel small molecule inhibitors is, therefore, an attractive strategy for therapeutic development. We have generated U2OS human osteosarcoma cells stably expressing a luciferase reporter construct under the control of a hypoxia response element (U2OS-HRE-luc). The U2OS-HRE-luc cells were robustly and reproducibly sensitive to hypoxic stress in a HIF-1-dependent manner. We developed an automated U2OS-HRE-luc cell-based assay that was used in a high-throughput screen to identify compounds that inhibited HIF-1 activity induced by treatment with the hypoxia mimetic, deferoxamine mesylate. We performed a pilot screen of the National Cancer Institute Diversity Set of 2,000 compounds. We identified eight hit compounds, six of these were also identified by Rapisarda et al. in an independent hypoxia screen. However, there were two novel hit compounds, NSC-134754 and NSC-643735, that did not significantly inhibit constitutive luciferase activity in U2OS cells (U2OS-luc). We showed that both NSC-134754 and NSC-643735 significantly inhibited HIF-1 activity and HIF-1alpha protein induced by deferoxamine mesylate. Interestingly, NSC-134754 but not NCS-643735 inhibited HIF-1 activity and HIF-1alpha protein induced by hypoxia and significantly inhibited Glut-1 expression. Finally, we showed that both NCS-134754 and NCS-643735 inhibited HIF-1alpha protein induced by insulin-like growth factor-1. Our cell-based assay approach has successfully identified novel compounds that differentially target hypoxia and/or growth factor-mediated induction of HIF-1alpha.


Cancer Research | 2007

Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin

Alison Maloney; Paul A. Clarke; Soren Naaby-Hansen; Robert Stein; Jens-Oliver Koopman; Akunna Akpan; Alice Yang; Marketa Zvelebil; Rainer Cramer; Lindsay Stimson; Wynne Aherne; Udai Banerji; Ian Judson; Swee Y. Sharp; Marissa V. Powers; Emmanuel deBilly; Joanne Salmons; Michael I. Walton; Al Burlingame; Michael D. Waterfield; Paul Workman

The promising antitumor activity of 17-allylamino-17-demethoxygeldanamycin (17AAG) results from inhibition of the molecular chaperone heat shock protein 90 (HSP90) and subsequent degradation of multiple oncogenic client proteins. Gene expression microarray and proteomic analysis were used to profile molecular changes in the A2780 human ovarian cancer cell line treated with 17AAG. Comparison of results with an inactive analogue and an alternative HSP90 inhibitor radicicol indicated that increased expression of HSP72, HSC70, HSP27, HSP47, and HSP90beta at the mRNA level were on-target effects of 17AAG. HSP27 protein levels were increased in tumor biopsies following treatment of patients with 17AAG. A group of MYC-regulated mRNAs was decreased by 17AAG. Of particular interest and novelty were changes in expression of chromatin-associated proteins. Expression of the heterochromatin protein 1 was increased, and expression of the histone acetyltransferase 1 and the histone arginine methyltransferase PRMT5 was decreased by 17AAG. PRMT5 was shown to be a novel HSP90-binding partner and potential client protein. Cellular protein acetylation was reduced by 17AAG, which was shown to have an antagonistic interaction on cell proliferation with the histone deacetylase inhibitor trichostatin A. This mRNA and protein expression analysis has provided new insights into the complex molecular pharmacology of 17AAG and suggested new genes and proteins that may be involved in response to the drug or be potential biomarkers of drug action.


The EMBO Journal | 2011

Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response

Maruf M.U. Ali; Tina Bagratuni; Emma L. Davenport; Piotr R Nowak; M. Cris Silva-Santisteban; Anthea Hardcastle; Craig McAndrews; Martin G. Rowlands; Gareth J. Morgan; Wynne Aherne; Ian Collins; Faith E. Davies; Laurence H. Pearl

Ire1 (Ern1) is an unusual transmembrane protein kinase essential for the endoplasmic reticulum (ER) unfolded protein response (UPR). Activation of Ire1 by association of its N‐terminal ER luminal domains promotes autophosphorylation by its cytoplasmic kinase domain, leading to activation of the C‐terminal ribonuclease domain, which splices Xbp1 mRNA generating an active Xbp1s transcriptional activator. We have determined the crystal structure of the cytoplasmic portion of dephosphorylated human Ire1α bound to ADP, revealing the ‘phosphoryl‐transfer’ competent dimeric face‐to‐face complex, which precedes and is distinct from the back‐to‐back RNase ‘active’ conformation described for yeast Ire1. We show that the Xbp1‐specific ribonuclease activity depends on autophosphorylation, and that ATP‐competitive inhibitors staurosporin and sunitinib, which inhibit autophosphorylation in vitro, also inhibit Xbp1 splicing in vivo. Furthermore, we demonstrate that activated Ire1α is a competent protein kinase, able to phosphorylate a heterologous peptide substrate. These studies identify human Ire1α as a target for development of ATP‐competitive inhibitors that will modulate the UPR in human cells, which has particular relevance for myeloma and other secretory malignancies.


Molecular Cancer Therapeutics | 2007

Inhibition of the Heat Shock Protein 90 Molecular Chaperone in Vitro and in Vivo by Novel, Synthetic, Potent Resorcinylic Pyrazole/Isoxazole Amide Analogues.

Swee Y. Sharp; Chrisostomos Prodromou; Kathy Boxall; Marissa V. Powers; Joanna L. Holmes; Gary Box; Thomas P. Matthews; Kwai-Ming J. Cheung; Andrew Kalusa; Karen Ellis James; Angela Hayes; Anthea Hardcastle; Brian W. Dymock; Paul Brough; Xavier Barril; Julie E. Cansfield; Lisa Wright; Allan Surgenor; Nicolas Foloppe; Roderick E. Hubbard; Wynne Aherne; Laurence H. Pearl; Keith Jones; Edward McDonald; Florence I. Raynaud; Sue Eccles; Martin J. Drysdale; Paul Workman

Although the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589. X-ray crystallography showed a virtually identical HSP90 binding mode. However, the dissociation constant (Kd) of VER-50589 was 4.5 ± 2.2 nmol/L compared with 78.0 ± 10.4 nmol/L for VER-49009, attributable to higher enthalpy for VER-50589 binding. A competitive binding assay gave a lower IC50 of 21 ± 4 nmol/L for VER-50589 compared with 47 ± 9 nmol/L for VER-49009. Cellular uptake of VER-50589 was 4-fold greater than for VER-49009. Mean cellular antiproliferative GI50 values for VER-50589 and VER-49009 for a human cancer cell line panel were 78 ± 15 and 685 ± 119 nmol/L, respectively, showing a 9-fold potency gain for the isoxazole. Unlike 17-AAG, but as with CCT018159, cellular potency of these analogues was independent of NAD(P)H:quinone oxidoreductase 1/DT-diaphorase and P-glycoprotein expression. Consistent with HSP90 inhibition, VER-50589 and VER-49009 caused induction of HSP72 and HSP27 alongside depletion of client proteins, including C-RAF, B-RAF, and survivin, and the protein arginine methyltransferase PRMT5. Both caused cell cycle arrest and apoptosis. Extent and duration of pharmacodynamic changes in an orthotopic human ovarian carcinoma model confirmed the superiority of VER-50589 over VER-49009. VER-50589 accumulated in HCT116 human colon cancer xenografts at levels above the cellular GI50 for 24 h, resulting in 30% growth inhibition. The results indicate the therapeutic potential of the resorcinylic pyrazole/isoxazole amide analogues as HSP90 inhibitors. [Mol Cancer Ther 2007;6(4):1198–211]


Investigational New Drugs | 1999

A human capecitabine excretion balance and pharmacokinetic study after administration of a single oral dose of 14C-labelled drug.

Ian Judson; Philip Beale; José Manuel Trigo; Wynne Aherne; Thomas Crompton; David Alan Jones; Ernie Bush; Bruno Reigner

An excretion balance and pharmacokinetic study was conducted in cancer patients with solid tumors who received a single oral dose of capecitabine of 2000 mg including 50 μ Ci of 14C-radiolabelled capecitabine. Blood, urine and fecal samples were collected until radioactive counts had fallen to below 50 dpm/mL in urine, and levels of intact drug and its metabolites were measured in plasma and urine by LC/MS-MS (mass spectrometry) and 19F-NMR (nuclear magnetic resonance) respectively. Based on the results of the 6 eligible patients enrolled, the dose was almost completely recovered in the urine (mean 95.5%, range 86–104% based on radioactivity measurements) over a period of 7 days after drug administration. Of this, 84% (range 71–95) was recovered in the first 12 hours. Over this time period, 2.64% (0.69–7.0) was collected in the feces. Over a collection period of 24–48h, a total of 84.2% (range 80–95) was recovered in the urine as the sum of the parent drug and measured metabolites (5′-DFCR, 5′-DFUR, 5-FU, FUH2, FUPA, FBAL). Based on the radioactivity measurements of drug-related material, absorption is rapid (tmax 0.25–1.5 hours) followed by a rapid biphasic decline. The parent drug is rapidly converted to 5-FU, which is present in low levels due to the rapid metabolism to FBAL, which has the longest half-life. There is a good correlation between the levels of radioactivity in the plasma and the levels of intact drug and the metabolites, suggesting that these represent the most abundant metabolites of capecitabine. The absorption of capecitabine is rapid and almost complete. The excretion of the intact drug and its metabolites is rapid and almost exclusively in the urine.


Clinical Cancer Research | 2008

Phase I Pharmacokinetic and Pharmacodynamic Study of LAQ824, a Hydroxamate Histone Deacetylase Inhibitor with a Heat Shock Protein-90 Inhibitory Profile, in Patients with Advanced Solid Tumors

Johann S. de Bono; Rebecca Kristeleit; Anthony W. Tolcher; Peter C.C. Fong; Simon Pacey; Vasilios Karavasilis; Monica M. Mita; Heather Shaw; Paul Workman; Stan B. Kaye; Eric K. Rowinsky; Wynne Aherne; Peter Atadja; Jeffrey W. Scott; Amita Patnaik

Purpose: To determine the safety, maximum tolerated dose, and pharmacokinetic-pharmacodynamic profile of a histone deacetylase inhibitor, LAQ824, in patients with advanced malignancy. Patients and Methods: LAQ824 was administered i.v. as a 3-h infusion on days 1, 2, and 3 every 21 days. Western blot assays of peripheral blood mononuclear cell lysates and tumor biopsies pretherapy and posttherapy evaluated target inhibition and effects on heat shock protein-90 (HSP90) client proteins and HSP72. Results: Thirty-nine patients (22 male; median age, 53 years; median Eastern Cooperative Oncology Group performance status 1) were treated at seven dose levels (mg/m2): 6 (3 patients), 12 (4 patients), 24 (4 patients), 36 (4 patients), 48 (4 patients), 72 (19 patients), and 100 (1 patient). Dose-escalation used a modified continual reassessment method. Dose-limiting toxicities were transaminitis, fatigue, atrial fibrillation, raised serum creatinine, and hyperbilirubinemia. A patient with pancreatic cancer treated at 100 mg/m2 died on course one at day 18 with grade 3 hyperbilirubinemia and neutropenia, fever, and acute renal failure. The area under the plasma concentration curve increased proportionally with increasing dose; median terminal half-life ranged from 8 to 14 hours. Peripheral blood mononuclear cell lysates showed consistent accumulation of acetylated histones posttherapy from 24 mg/m2; higher doses resulted in increased and longer duration of pharmacodynamic effect. Changes in HSP90 client protein and HSP72 levels consistent with HSP90 inhibition were observed at higher doses. No objective response was documented; 3 patients had stable disease lasting up to 14 months. Based on these data, future efficacy trials should evaluate doses ranging from 24 to 72 mg/m2. Conclusions: LAQ824 was well tolerated at doses that induced accumulation of histone acetylation, with higher doses inducing changes consistent with HSP90 inhibition.


Cancer Research | 2007

In vitro Biological Characterization of a Novel, Synthetic Diaryl Pyrazole Resorcinol Class of Heat Shock Protein 90 Inhibitors

Swee Y. Sharp; Kathy Boxall; Martin G. Rowlands; Chrisostomos Prodromou; S. Mark Roe; Alison Maloney; Marissa V. Powers; Paul A. Clarke; Gary Box; Sharon Sanderson; Lisa Patterson; Thomas P. Matthews; Kwai-Ming J. Cheung; Karen Ball; Angela Hayes; Florence I. Raynaud; Richard Marais; Laurence H. Pearl; Sue Eccles; Wynne Aherne; Edward McDonald; Paul Workman

The molecular chaperone heat shock protein 90 (HSP90) has emerged as an exciting molecular target. Derivatives of the natural product geldanamycin, such as 17-allylamino-17-demethoxy-geldanamycin (17-AAG), were the first HSP90 ATPase inhibitors to enter clinical trial. Synthetic small-molecule HSP90 inhibitors have potential advantages. Here, we describe the biological properties of the lead compound of a new class of 3,4-diaryl pyrazole resorcinol HSP90 inhibitor (CCT018159), which we identified by high-throughput screening. CCT018159 inhibited human HSP90beta with comparable potency to 17-AAG and with similar ATP-competitive kinetics. X-ray crystallographic structures of the NH(2)-terminal domain of yeast Hsp90 complexed with CCT018159 or its analogues showed binding properties similar to radicicol. The mean cellular GI(50) value of CCT018159 across a panel of human cancer cell lines, including melanoma, was 5.3 mumol/L. Unlike 17-AAG, the in vitro antitumor activity of the pyrazole resorcinol analogues is independent of NQO1/DT-diaphorase and P-glycoprotein expression. The molecular signature of HSP90 inhibition, comprising increased expression of HSP72 protein and depletion of ERBB2, CDK4, C-RAF, and mutant B-RAF, was shown by Western blotting and quantified by time-resolved fluorescent-Cellisa in human cancer cell lines treated with CCT018159. CCT018159 caused cell cytostasis associated with a G(1) arrest and induced apoptosis. CCT018159 also inhibited key endothelial and tumor cell functions implicated in invasion and angiogenesis. Overall, we have shown that diaryl pyrazole resorcinols exhibited similar cellular properties to 17-AAG with potential advantages (e.g., aqueous solubility, independence from NQO1 and P-glycoprotein). These compounds form the basis for further structure-based optimization to identify more potent inhibitors suitable for clinical development.


Cancer Research | 2010

A useful approach to identify novel small-molecule inhibitors of Wnt-dependent transcription.

Kenneth Burnside Ramsay Ewan; Bożena Pajak; Mark Stubbs; Helen Todd; Olivier Barbeau; Camilo E. Quevedo; Hannah Botfield; Rodrigo M. Young; Ruth Ruddle; Lee Samuel; Alysia Battersby; Florence I. Raynaud; Nicholas Denby Allen; Stephen W. Wilson; Branko Latinkic; Paul Workman; Edward McDonald; Julian Blagg; Wynne Aherne; Trevor Clive Dale

The Wnt signaling pathway is frequently deregulated in cancer due to mutations in genes encoding APC, beta-catenin, and axin. To identify small-molecule inhibitors of Wnt signaling as potential therapeutics, a diverse chemical library was screened using a transcription factor reporter cell line in which the activity of the pathway was induced at the level of Disheveled protein. A series of deconvolution studies was used to focus on three compound series that selectively killed cancer cell lines with constitutive Wnt signaling. Activities of the compounds included the ability to induce degradation of beta-catenin that had been stabilized by a glycogen synthase kinase-3 (GSK-3) inhibitor. This screen illustrates a practical approach to identify small-molecule inhibitors of Wnt signaling that can seed the development of agents suitable to treat patients with Wnt-dependent tumors.

Collaboration


Dive into the Wynne Aherne's collaboration.

Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Martin G. Rowlands

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anthea Hardcastle

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swee Y. Sharp

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Collins

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Eccles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Edward McDonald

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge