Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xabier Murgia.
Pediatric Research | 2013
Carmen Rey-Santano; Victoria Mielgo; Leire Andres; Estibaliz Ruiz-del-Yerro; Adolfo Valls-i-Soler; Xabier Murgia
Background:Surfactant (SF) instillation may produce acute deleterious effects on gas exchange and both systemic and cerebral hemodynamics. Our aim was to compare the effects of aerosolized SF (SF-aero) with those of bolus SF (SF-bolus) administration on gas exchange, lung mechanics, and cardiovascular function in premature lambs with respiratory distress syndrome (RDS).Methods:Fourteen preterm lambs (85% gestation) were randomly assigned to receive SF-aero or SF-bolus. Oxygenation index (OI), PaCO2, cardiovascular parameters, carotid blood flow (CBF), lung compliance (mean dynamic compliance), and tidal volume (VT) were measured every 30 min for 6 h. Biochemical and histological analyses were performed.Results:After delivery, lambs developed severe RDS (inspiratory fraction of oxygen: 1; pH < 7.15; PaCO2 > 80 mm Hg; PaO2 < 30 mm Hg, mean dynamic compliance < 0.08 ml/cm H2O/kg). By 60 min after treatment, both groups showed an improvement in OI, PaCO2, mean dynamic compliance, and VT that was maintained until the end of the experiment. PaCO2 and CBF increased significantly in the SF-bolus group during the first 15–30 min, without concomitant changes in cardiovascular parameters, whereas in the SF-aero group, PaCO2 and CBF decreased gradually. SF-aero induced less alveolar hemorrhage and inflammation.Conclusion:SF-aero produced improvements in gas exchange and lung mechanics similar to those produced by bolus administration but with less lung injury and fewer cerebral hemodynamic changes.
Journal of Aerosol Medicine and Pulmonary Drug Delivery | 2011
Xabier Murgia; Elena Gastiasoro; Victoria Mielgo; Francisco J. Alvarez-Diaz; Hector Lafuente; Adolf Valls-i-Soler; Miguel Angel Gomez-Solaetxe; Juan Luis Larrabe; Carmen Rey-Santano
BACKGROUND The aerosolization of perfluorocarbons or surfactant has emerged as a feasible alternative to instillation, for the treatment of experimental respiratory distress syndrome. However, the biophysical properties that make these compounds useful in such therapies, significantly affect the performance of nebulizers. Therefore, in vitro studies are required to assess the suitability of new aerosolization technologies for use with these compounds. METHODS The aim of the present in vitro study was to investigate the influence of the biophysical properties of perfluorocarbons (PFD, FC75, and PFOB) and a natural porcine surfactant, Curosurf®; on aerosolization and to assess the suitability of three intratracheal inhalation catheters (IC) with different air flow rates (IC-1.23, IC-1.1, IC-1.4) coupled to a jet nebulizer, for aerosol delivery of these compounds. RESULTS With IC-1.23 significantly higher aerosol production rates were achieved (p < 0.0001), ranging between 6.05 ± 0.17 mL/min (FC75) and 1.94 ± 0.09 mL/min (Curosurf®), and lower percentage losses of the compound (5-21%), compared to IC-1.1 and IC-1.4 catheters. The lowest aerosolization rates were produced with IC-1.4 ranging from 0.58 ± 0.02 mL/min (FC75) to 0.14 ± 0.01 mL/min (Curosurf®), and this catheter also resulted in the highest percentage losses (25-60%). The mass median aerodynamic diameter (MMAD) ranged between 0.77 μm (PFD) and 8.29 μm (Curosurf®) with IC-1.1, whereas higher MMAD values, of between 4.84 μm (FC75) and 13.42 μm (PFOB), were observed with IC-1.23. Regardless of the catheter used during aerosolization, the perfluorocarbon with the highest kinematic viscosity showed the lowest aerosolization and emission rates and vice versa, which reveals the substantial contribution of this parameter that should accordingly be considered in the design of perfluorocarbon aerosol drug delivery systems. CONCLUSIONS Jet aerosolization of perfluorocarbons or surfactant with the intratracheal inhalation catheters seems to be a suitable method for treating experimental respiratory distress syndrome, because it delivers relatively high doses of perfluorocarbons and surfactant to the lungs in a respirable size droplets.
Pediatric Critical Care Medicine | 2012
Carmen Rey-Santano; Victoria Mielgo; Elena Gastiasoro; Francisco J. Alvarez-Diaz; Hector Lafuente; Adolfo Valls-i-Soler; Xabier Murgia
Objective: Today, in meconium aspiration syndrome, treatment focuses on bronchoalveolar lavage, because it removes meconium and proinflammatory factors from airways. This technique might be more effective if different solutions were used such as saline solution, a protein-free surfactant, or a perfluorocarbon, because these would be less inhibited by meconium proteins. Setting: Pulmonary physiology research unit, Cruces Hospital. Design: Prospective, randomized study. Subjects: We studied 24 lambs (<6 days) on mechanical ventilation for 180 mins. Catheters were placed and femoral and pulmonary arteries pressures registered (systemic and pulmonary arterial pressures). Interventions: Lambs were instilled with 20% meconium (3–5 mL/Kg) and were randomly assigned to one of the following groups (n = 6): control: only continuous mechanical ventilation; saline bronchoalveolar lavage: bronchoalveolar lavage with 30 mL/kg of saline solution; dilute surfactant bronchoalveolar lavage: bronchoalveolar lavage with 32 mL/kg of diluted surfactant (lucinactant, 10 mg/mL); or perfluorocarbon bronchoalveolar lavage: bronchoalveolar lavage with 30 mL/kg of perfluorocarbon. Measurements and Main Results: Blood gases, cardiovascular parameters, and pulmonary mechanics were assessed. Meconium instillation produced severe hypoxia, hypercapnia, acidosis, and pulmonary hypertension with impairment of pulmonary mechanics (p < .05). Lung lavage with dilute surfactant resulted in the resolution of pulmonary hypertension as well as better gas exchange and pulmonary mechanics than the control group (p < .05). Bronchoalveolar lavage with perfluorocarbon produced a transient improvement in gas exchange and ventilatory indices in comparison with control and saline bronchoalveolar lavage groups. Conclusions: In lambs with meconium aspiration syndrome, bronchoalveolar lavage with diluted lucinactant is an effective therapy producing significant improvements in gas exchange, pulmonary hypertension, and pulmonary mechanics. In addition, bronchoalveolar lavage with perfluorocarbon appears to confer some advantages over lavage with equal volumes of saline or no lavage.
Pediatric Research | 2012
Xabier Murgia; Victoria Mielgo; Adolf Valls-i-Soler; Estibaliz Ruiz-del-Yerro; Carmen Rey-Santano
Background:Aerosolized perfluorocarbon (PFC) has been proposed as an alternative method of PFC administration; however, the efficacy of aerosolized PFC in a preterm animal model has not yet been demonstrated.Methods:Twelve preterm lambs were randomized to two groups: a perfluorodecalin (PFD) aerosol group (n = 6) receiving 10 ml/kg/h of PFD delivered by an intratracheal inhalation catheter followed by 4 h of mechanical ventilation (MV) or the control group, in which animals (n = 6) were managed for 6 h with MV. Gas exchange, pulmonary mechanics, cardiovascular parameters, and cerebral blood flow (CBF) were measured.Results:Both groups developed hypoxia, hypercarbia, and acidosis at baseline. Aerosolized PFD improved oxygenation (P < 0.0001) and pulmonary mechanics (P < 0.0001) and changed carbon dioxide values to normal physiological levels, unlike the treatment given to the controls (P < 0.0003). The time course of mean arterial blood pressure and CBF were significantly affected by PFD aerosolization, especially during the first hour of life. CBF gradually decreased during the first hour in the PFD aerosol group and remained stable until the end of the follow-up, whereas CBF remained higher in the control group (P < 0.0028).Conclusion:Aerosolized PFD improves pulmonary function in preterm lambs and should be further investigated as an alternative mode of PFC administration.
Frontiers in Neuroscience | 2011
Carmen Rey-Santano; Victoria Mielgo; Elena Gastiasoro; Xabier Murgia; Hector Lafuente; Estibaliz Ruiz-del-Yerro; Adolf Valls-i-Soler; Enrique Hilario; Francisco J. Alvarez
The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic–ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury.
Journal of Aerosol Medicine and Pulmonary Drug Delivery | 2012
Xabier Murgia; Elena Gastiasoro; Victoria Mielgo; Estibaliz Ruiz-del-Yerro; Francisco J. Alvarez-Diaz; Hector Lafuente; Adolf Valls-i-Soler; Miguel Angel Gomez-Solaetxe; Carmen Rey-Santano
BACKGROUND Aerosol delivery of surfactant and perfluorocarbon (PFC) is a desirable therapeutic approach for the treatment of various lung diseases in patients undergoing mechanical ventilation. However, the behavior of these substances during aerosolization differs significantly from that of aqueous solutions. In particular, the high vapor pressure of many PFCs tends to result in greater evaporation during mechanical ventilation. METHODS Three PFCs and surfactant were aerosolized during mechanical ventilation by means of three intratracheal inhalation catheters (IC) with different air flow rates (IC-1.23, IC-1.1, and IC-1.4), with their aerosol generating tip placed at the distal end of the endotracheal tube (i.d. 4 mm). The influence of four different ventilation strategies on aerosol production rate and PFC and surfactant recovery was studied. The changes in intrapulmonary pressure produced by the air jets of each IC were measured. RESULTS With IC-1.23 and IC-1.1, the highest rates of aerosol production were achieved using FC75 (2.27±0.18 and 0.76±0.01, respectively) followed by PFOB (1.74±0.06 and 0.56±0.04), PFD (0.82±0.01 and 0.21±0.01), and surfactant (0.42±0.05 and 0.092±0.01). With IC-1.4 modest aerosol production was obtained irrespective of the aerosolized compound. Mechanical ventilation influenced aerosol recovery, with the trend being toward recovering higher percentages of the compounds with lower peak inspiratory pressure (PIP) and lower respiratory rate (RR) settings. The highest percentages of the initial volume were recovered with IC-1.23 (between 65.43%±4.2 FC75 and 90.21%±4.71 surfactant) followed by IC-1.1 (between 46.48%±4.46 FC75 and 73.19%±2.82 PFOB) and IC-1.4 (between 4.65%±4.36 FC75 and 63.24%±9.71 surfactant). Each of three of the ICs were found to increase the intrapulmonary pressure by about 2-3 cmH₂O during mechanical ventilation. CONCLUSIONS Despite of mechanical ventilation, IC-1.23 and IC-1.1 were able to deliver significant amounts of surfactant and perfluorocarbon to the lung model. Changes in PIP and RR directly influence the percentage of surfactant and perfluorocarbon recovered.
PLOS ONE | 2014
Estibalitz Goikoetxea; Xabier Murgia; Pablo Serna-Grande; Adolf Valls-i-Soler; Carmen Rey-Santano; Alejandro Rivas; Raúl Antón; Francisco J. Basterretxea; Lorena Miñambres; Estíbaliz Méndez; Alberto Lopez-Arraiza; Juan Luis Larrabe-Barrena; Miguel Angel Gomez-Solaetxe
Objective Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar). Conclusion This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
Critical Care Medicine | 2015
Carmen Rey-Santano; Victoria Mielgo; Jon López-de-Heredia-y-Goya; Xabier Murgia; Adolfo Valls-i-Soler
Objective:Aerosolization has been proposed as a useful alternative to rapid intratracheal instillation for the delivery of exogenous surfactant in neonatal respiratory distress syndrome. However, there is a lack of information regarding the likely safety of this new therapeutic approach for the neonatal brain. We aimed to compare the cerebral effects of aerosolized versus bolus surfactant administration in premature lambs with respiratory distress syndrome. Design:Prospective randomized study. Setting:BioCruces Institute Animal Research Facility. Subjects:Fourteen intensively monitored and mechanically ventilated preterm lambs. Interventions:Preterm lambs were randomly assigned to receive intratracheal aerosolized surfactant or bolus surfactant. Brain hemodynamics (cerebral and regional cerebral blood flow) and cerebral oxygen metabolism (cerebral oxygen delivery, cerebral metabolic rate of oxygen, and oxygen extraction fraction) were measured every 30 minutes for 6 hours. We also performed cerebral biochemical and histological analysis. Measurements and Main Results:In preterm lambs with respiratory distress syndrome, cerebral blood flow, regional cerebral blood flow, cerebral oxygen delivery, and cerebral metabolic rate of oxygen increased significantly in the bolus surfactant group during the first 5 minutes, without changes in cerebral oxygen extraction fraction. By 60 minutes, all parameters had decreased in both groups, cerebral blood flow and regional cerebral blood flow (in inner and cerebellum brainstem regions) remaining higher in the bolus surfactant than in the aerosolized surfactant group. Overall, the impact of aerosol surfactant was not significantly different to that of bolus surfactant in terms of cerebral necrosis, edema, inflammation, hemorrhage, infarct, apoptosis, or oxidative stress. Conclusions:In preterm lambs with severe respiratory distress syndrome, aerosol surfactant administration seems to be as safe as bolus administration, showing more stable cerebral hemodynamics and cerebral oxygen metabolism to the same dose of surfactant administered as a standard bolus.
PLOS ONE | 2013
Carmen Rey-Santano; Victoria Mielgo; Elena Gastiasoro; Adolfo Valls-i-Soler; Xabier Murgia
Objectives Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Setting Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Design Prospective, randomized study using sealed envelopes. Subjects 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. Interventions All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Measurements and Main Results Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. Conclusion SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.
Pediatric Research | 2011
Carmen Rey-Santano; Victoria Mielgo; Elena Gastiasoro; Francisco J. Alvarez; Hector Lafuente; Estibaliz Ruiz-del-Yerro; S Gomez; L Andres; Adolfo Valls-i-Soler; Xabier Murgia
Background: In neonatal RDS bolus administration of surfactant (SF) is an effective therapy, however has been linked to “peridosing adverse events”. Aerosolization of SF has emerged as feasible alternative to instillation for RDS.Aim: To determinate the effects of aerosolized SF on gas exchange, lung function and cerebral hemodynamic in preterm lambs.Methods: 21 preterm lambs (85%gestation) were randomly assigned to receive aerosolized SF (Curosurf ®, 200mg/kg in 20min), delivered via an inhalation catheter coupled to a jet nebulizer and connected to a ventilator (SF-Aero), bolus SF (SF-Bolus) or not (Control), groups were maintained during 6h in IMV. Gas exchange [oxygenation index (OI) and PaCO2], systemic and cerebral hemodynamic [mean arterial blood pressure (MABP), heart rate (HR) and cerebral blood flow (CBF)], lung mechanics [compliance (Cdyn) and tidal volume (VT)] were measured each 30 min. Mean±SD, ANOVA, p< 0.05.Results: After 60min of treatment, animals in SF-Aero and SF-Bolus groups, significantly improved OI, PaCO2, Cdyn and VT in comparison to control group, being improvement persistent until the end of the experiment. Also, there was a significant increase of PaCO2 and CBF in SF-Bolus group (p< 0.05) during the first 30 min of treatment, without changes on MABP and HR in comparison with SF-Aero group, in which there was a gradual decrease of PaCO2 and CBF along the time.Conclusion: In preterm lambs with RDS, the SF aerosolization improves pulmonary function and gas exchange without evidenced of acute of sustained hemodynamic changes thus; this SF administration technique is effective and safe.