Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Barril is active.

Publication


Featured researches published by Xavier Barril.


Cancer Research | 2008

NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis

Suzanne A. Eccles; Andrew Massey; Florence I. Raynaud; Swee Y. Sharp; Gary Box; Melanie Valenti; Lisa Patterson; Alexis de Haven Brandon; Sharon Gowan; Frances E. Boxall; Wynne Aherne; Martin G. Rowlands; Angela Hayes; Vanessa Martins; Frederique Urban; Kathy Boxall; Chrisostomos Prodromou; Laurence H. Pearl; Karen B. James; Thomas P. Matthews; Kwai-Ming Cheung; Andrew Kalusa; Keith Jones; Edward McDonald; Xavier Barril; Paul Brough; Julie E. Cansfield; Brian W. Dymock; Martin J. Drysdale; Harry Finch

We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials.


Journal of Medicinal Chemistry | 2010

Understanding and Predicting Druggability. A High-Throughput Method for Detection of Drug Binding Sites

Peter Schmidtke; Xavier Barril

Druggability predictions are important to avoid intractable targets and to focus drug discovery efforts on sites offering better prospects. However, few druggability prediction tools have been released and none has been extensively tested. Here, a set of druggable and nondruggable cavities has been compiled in a collaborative platform ( http://fpocket.sourceforge.net/dcd ) that can be used, contributed, and curated by the community. Druggable binding sites are often oversimplified as closed, hydrophobic cavities, but data set analysis reveals that polar groups in druggable binding sites have properties that enable them to play a decisive role in ligand recognition. Finally, the data set has been used in conjunction with the open source fpocket suite to train and validate a logistic model. State of the art performance was achieved for predicting druggability on known binding sites and on virtual screening experiments where druggable pockets are retrieved from a pool of decoys. The algorithm is free, extremely fast, and can effectively be used to automatically sieve through massive collections of structures ( http://fpocket.sourceforge.net ).


Journal of Medicinal Chemistry | 2009

Binding Site Detection and Druggability Index from First Principles

Jesus Seco; F. Javier Luque; Xavier Barril

In drug discovery, it is essential to identify binding sites on protein surfaces that drug-like molecules could exploit to exert a biological effect. Both X-ray crystallography and NMR experiments have demonstrated that organic solvents bind precisely at these locations. We show that this effect is reproduced using molecular dynamics with a binary solvent. Furthermore, analysis of the simulations give direct access to interaction free energies between the protein and small organic molecules, which can be used to detect binding sites and to predict the maximal affinity that a drug-like molecule could attain for them. On a set of pharmacologically relevant proteins, we obtain good predictions for druggable sites as well as for protein-protein and low affinity binding sites. This is the first druggability index not based on surface descriptors and, being independent of a training set, is particularly indicated to study unconventional targets such as protein-protein interactions or allosteric binding sites.


Journal of Medicinal Chemistry | 2009

Combining Hit Identification Strategies: Fragment- Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3-D]Pyrimidine Inhibitors of the Hsp90 Molecular Chaperone.

Paul Brough; Xavier Barril; Jenifer Borgognoni; Patrick Chène; Nicholas Gareth Morse Davies; Ben Davis; Martin J. Drysdale; Brian W. Dymock; Suzanne A. Eccles; Carlos Garcia-Echeverria; Christophe Fromont; Angela Hayes; Roderick E. Hubbard; Allan M. Jordan; Michael Rugaard Jensen; Andrew Massey; Angela Merrett; Antony Padfield; Rachel Parsons; Thomas Radimerski; Florence I. Raynaud; Alan Robertson; Stephen D. Roughley; Joseph Schoepfer; Heather Simmonite; Swee Y. Sharp; Allan Surgenor; Melanie Valenti; Steven Walls; Paul Webb

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Several examples (34a, 34d and 34i) caused tumor growth regression at well tolerated doses when administered orally in a human BT474 human breast cancer xenograft model.


Bioinformatics | 2011

MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories

Peter Schmidtke; Axel Bidon-Chanal; F. Javier Luque; Xavier Barril

MOTIVATION A variety of pocket detection algorithms are now freely or commercially available to the scientific community for the analysis of static protein structures. However, since proteins are dynamic entities, enhancing the capabilities of these programs for the straightforward detection and characterization of cavities taking into account protein conformational ensembles should be valuable for capturing the plasticity of pockets, and therefore allow gaining insight into structure-function relationships. RESULTS This article describes a new method, called MDpocket, providing a fast, free and open-source tool for tracking small molecule binding sites and gas migration pathways on molecular dynamics (MDs) trajectories or other conformational ensembles. MDpocket is based on the fpocket cavity detection algorithm and a valuable contribution to existing analysis tools. The capabilities of MDpocket are illustrated for three relevant cases: (i) the detection of transient subpockets using an ensemble of crystal structures of HSP90; (ii) the detection of known xenon binding sites and migration pathways in myoglobin; and (iii) the identification of suitable pockets for molecular docking in P38 Map kinase. AVAILABILITY MDpocket is free and open-source software and can be downloaded at http://fpocket.sourceforge.net. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Journal of Chemical Information and Computer Sciences | 2004

Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets

Nicolas Baurin; Fareed Aboul-Ela; Xavier Barril; Ben Davis; Martin J. Drysdale; Brian W. Dymock; Harry Finch; Christophe Fromont; Christine M. Richardson; Heather Simmonite; Roderick E. Hubbard

We have designed four generations of a low molecular weight fragment library for use in NMR-based screening against protein targets. The library initially contained 723 fragments which were selected manually from the Available Chemicals Directory. A series of in silico filters and property calculations were developed to automate the selection process, allowing a larger database of 1.79 M available compounds to be searched for a further 357 compounds that were added to the library. A kinase binding pharmacophore was then derived to select 174 kinase-focused fragments. Finally, an additional 61 fragments were selected to increase the number of different pharmacophores represented within the library. All of the fragments added to the library passed quality checks to ensure they were suitable for the screening protocol, with appropriate solubility, purity, chemical stability, and unambiguous NMR spectrum. The successive generations of libraries have been characterized through analysis of structural properties (molecular weight, lipophilicity, polar surface area, number of rotatable bonds, and hydrogen-bonding potential) and by analyzing their pharmacophoric complexity. These calculations have been used to compare the fragment libraries with a drug-like reference set of compounds and a set of molecules that bind to protein active sites. In addition, an analysis of the overall results of screening the library against the ATP binding site of two protein targets (HSP90 and CDK2) reveals different patterns of fragment binding, demonstrating that the approach can find selective compounds that discriminate between related binding sites.


Journal of the American Chemical Society | 2011

Shielded Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in Drug Design

Peter Schmidtke; F. Javier Luque; James B. Murray; Xavier Barril

Time scale control of molecular interactions is an essential part of biochemical systems, but very little is known about the structural factors governing the kinetics of molecular recognition. In drug design, the lifetime of drug-target complexes is a major determinant of pharmacological effects but the absence of structure-kinetic relationships precludes rational optimization of this property. Here we show that almost buried polar atoms--a common feature on protein binding sites--tend to form hydrogen bonds that are shielded from water. Formation and rupture of this type of hydrogen bonds involves an energetically penalized transition state because it occurs asynchronously with dehydration/rehydration. In consequence, water-shielded hydrogen bonds are exchanged at slower rates. Occurrence of this phenomenon can be anticipated from simple structural analysis, affording a novel tool to interpret and predict structure-kinetics relationships. The validity of this principle has been investigated on two pairs of Hsp90 inhibitors for which detailed thermodynamic and kinetic data has been experimentally determined. The agreement between macroscopic observables and molecular simulations confirms the role of water-shielded hydrogen bonds as kinetic traps and illustrates how our finding could be used as an aid in structure-based drug discovery.


Molecular Cancer Therapeutics | 2007

Inhibition of the Heat Shock Protein 90 Molecular Chaperone in Vitro and in Vivo by Novel, Synthetic, Potent Resorcinylic Pyrazole/Isoxazole Amide Analogues.

Swee Y. Sharp; Chrisostomos Prodromou; Kathy Boxall; Marissa V. Powers; Joanna L. Holmes; Gary Box; Thomas P. Matthews; Kwai-Ming J. Cheung; Andrew Kalusa; Karen Ellis James; Angela Hayes; Anthea Hardcastle; Brian W. Dymock; Paul Brough; Xavier Barril; Julie E. Cansfield; Lisa Wright; Allan Surgenor; Nicolas Foloppe; Roderick E. Hubbard; Wynne Aherne; Laurence H. Pearl; Keith Jones; Edward McDonald; Florence I. Raynaud; Sue Eccles; Martin J. Drysdale; Paul Workman

Although the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589. X-ray crystallography showed a virtually identical HSP90 binding mode. However, the dissociation constant (Kd) of VER-50589 was 4.5 ± 2.2 nmol/L compared with 78.0 ± 10.4 nmol/L for VER-49009, attributable to higher enthalpy for VER-50589 binding. A competitive binding assay gave a lower IC50 of 21 ± 4 nmol/L for VER-50589 compared with 47 ± 9 nmol/L for VER-49009. Cellular uptake of VER-50589 was 4-fold greater than for VER-49009. Mean cellular antiproliferative GI50 values for VER-50589 and VER-49009 for a human cancer cell line panel were 78 ± 15 and 685 ± 119 nmol/L, respectively, showing a 9-fold potency gain for the isoxazole. Unlike 17-AAG, but as with CCT018159, cellular potency of these analogues was independent of NAD(P)H:quinone oxidoreductase 1/DT-diaphorase and P-glycoprotein expression. Consistent with HSP90 inhibition, VER-50589 and VER-49009 caused induction of HSP72 and HSP27 alongside depletion of client proteins, including C-RAF, B-RAF, and survivin, and the protein arginine methyltransferase PRMT5. Both caused cell cycle arrest and apoptosis. Extent and duration of pharmacodynamic changes in an orthotopic human ovarian carcinoma model confirmed the superiority of VER-50589 over VER-49009. VER-50589 accumulated in HCT116 human colon cancer xenografts at levels above the cellular GI50 for 24 h, resulting in 30% growth inhibition. The results indicate the therapeutic potential of the resorcinylic pyrazole/isoxazole amide analogues as HSP90 inhibitors. [Mol Cancer Ther 2007;6(4):1198–211]


Journal of Medicinal Chemistry | 2009

Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.

José Marco-Contelles; Rafael León; Cristóbal de los Ríos; Abdelouahid Samadi; Manuela Bartolini; Vincenza Andrisano; Oscar Huertas; Xavier Barril; F. Javier Luque; María Isabel Rodríguez-Franco; Beatriz López; Manuela G. López; Antonio G. García; Maria do Carmo Carreiras; Mercedes Villarroya

Tacripyrines (1-14) have been designed by combining an AChE inhibitor (tacrine) with a calcium antagonist such as nimodipine and are targeted to develop a multitarget therapeutic strategy to confront AD. Tacripyrines are selective and potent AChE inhibitors in the nanomolar range. The mixed type inhibition of hAChE activity of compound 11 (IC(50) 105 +/- 15 nM) is associated to a 30.7 +/- 8.6% inhibition of the proaggregating action of AChE on the Abeta and a moderate inhibition of Abeta self-aggregation (34.9 +/- 5.4%). Molecular modeling indicates that binding of compound 11 to the AChE PAS mainly involves the (R)-11 enantiomer, which also agrees with the noncompetitive inhibition mechanism exhibited by p-methoxytacripyrine 11. Tacripyrines are neuroprotective agents, show moderate Ca(2+) channel blocking effect, and cross the blood-brain barrier, emerging as lead candidates for treating AD.


PLOS Computational Biology | 2014

rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids

Sergio Ruiz-Carmona; Daniel Alvarez-Garcia; Nicolas Foloppe; A. Beatriz Garmendia-Doval; Szilveszter Juhos; Peter Schmidtke; Xavier Barril; Roderick E. Hubbard; S. David Morley

Identification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock Vina (open source) and Schrödingers Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.sourceforge.net/

Collaboration


Dive into the Xavier Barril's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin J. Drysdale

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

F. J. Luque

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Brian W. Dymock

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Surgenor

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Paul Brough

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Peter Schmidtke

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge