Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Crispin is active.

Publication


Featured researches published by Xavier Crispin.


Nature Materials | 2011

Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)

Olga Bubnova; Zia Ullah Khan; Abdellah Malti; Slawomir Braun; Mats Fahlman; Magnus Berggren; Xavier Crispin

Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi(2)Te(3))-based alloys, which possess a figure of merit ZT close to one. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m(-1) K(-1)) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices.


Synthetic Metals | 2003

The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films

Stina Jönsson; J. Birgerson; Xavier Crispin; Grzegorz Greczynski; Wojciech Osikowicz; A. W. Denier van der Gon; William R. Salaneck; Mats Fahlman

The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films


Nature Materials | 2014

Semi-metallic polymers

Olga Bubnova; Zia Ullah Khan; Hui Wang; Slawomir Braun; Drew Evans; Manrico Fabretto; Pejman Hojati-Talemi; Daniel Dagnelund; Jean-Baptiste Arlin; Yves Geerts; Simon Desbief; Dag W. Breiby; Jens Wenzel Andreasen; Roberto Lazzaroni; Weimin Chen; Igor Zozoulenko; Mats Fahlman; Peter J. Murphy; Magnus Berggren; Xavier Crispin

Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.


Advanced Materials | 2010

A Water‐Gate Organic Field‐Effect Transistor

Loïg Kergoat; Lars Herlogsson; Daniele Braga; Benoît Piro; Minh-Chau Pham; Xavier Crispin; Magnus Berggren; Gilles Horowitz

High-dielectric-constant insulators, organic monolayers, and electrolytes have been successfully used to generate organic field-effect transistors operating at low voltages. Here, we report on a de ...


Journal of the American Chemical Society | 2012

Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor.

Olga Bubnova; Magnus Berggren; Xavier Crispin

While organic field-effect transistors allow the investigation of interfacial charge transport at the semiconductor-dielectric interface, an electrochemical transistor truly modifies the oxidation level and conductivity throughout the bulk of an organic semiconductor. In this work, the thermoelectric properties of the bulk of the conducting polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) were controlled electrically by varying the gate voltage. In light of the growing interest in conducting polymers as thermoelectric generators, this method provides an easy tool to study the physics behind the thermoelectric properties and to optimize polymer thermoelectrics.


Journal of Chemical Physics | 1999

Electronic structure of tris(8-hydroxyquinoline) aluminum thin films in the pristine and reduced states

N. Johansson; T. Osada; Sven Stafström; William R. Salaneck; V. Parente; D.A. dos Santos; Xavier Crispin; J. L. Brédas

The electronic structure of tris(8-hydroxyquinoline) aluminum (Alq3) has been studied in the pristine molecular solid state as well as upon interaction (doping) with potassium and lithium. We discuss the results of a joint theoretical and experimental investigation, based on a combination of x-ray and ultraviolet photoelectron spectroscopies with quantum-chemical calculations at the density functional theory level. Upon doping, each electron transferred from an alkali metal atom is stored on one of the three ligands of the Alq3 molecule, resulting in a new spectral feature (peak) in the valence band that evolves uniformly when going from a doping level of one to three metal atoms per Alq3 molecule.


Advanced Materials | 2009

Fiber‐Embedded Electrolyte‐Gated Field‐Effect Transistors for e‐Textiles

Mahiar Hamedi; Lars Herlogsson; Xavier Crispin; Rebeca Marcilla; Magnus Berggren; Olle Inganäs

Electrolyte-gate organic field-effect transistors embedded at the junction of textile microfibers are demonstrated. The fiber transistor operates below I V and delivers large current densities. The ...


Applied Physics Letters | 2006

Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film

Elias Said; Xavier Crispin; Lars Herlogsson; Sami Elhag; Nathaniel D. Robinson; Magnus Berggren

A polyanionic proton conductor, named poly(styrenesulfonic acid) (PSSH), is used to gate an organic field-effect transistor (OFET) based on poly(3-hexylthiophene) (P3HT). Upon applying a gate bias, ...


Advanced Materials | 2015

Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

Annie Weathers; Zia Ullah Khan; Robert Brooke; Drew Evans; Michael T. Pettes; Jens Wenzel Andreasen; Xavier Crispin; Li Shi

Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increases with the electrical conductivity. The increase exceeds that predicted by the Wiedemann-Franz law for metals and can be explained by significant electronic thermal transport in PEDOT.


Advanced Materials | 2010

Low-Voltage Ring Oscillators Based on Polyelectrolyte-Gated Polymer Thin-Film Transistors

Lars Herlogsson; Michael Cölle; Steven Tierney; Xavier Crispin; Magnus Berggren

There has been a remarkable progress in the development of organic electronic materials since the discovery of conducting polymers more than three decades ago. Many of these materials can be processed from solution, in the form as inks. This allows for using traditional high-volume printing techniques for manufacturing of organic electronic devices on various flexible surfaces at low cost. Many of the envisioned applications will use printed batteries, organic solar cells or electromagnetic coupling for powering. This requires that the included devices are power efficient and can operate at low voltages. This thesis is focused on organic thin-film transistors that employ electrolytes as gate insulators. The high capacitance of the electrolyte layers allows the transistors to operate at very low voltages, at only 1 V. Polyanion-gated p-channel transistors and polycation-gated n-channel transistors are demonstrated. The mobile ions in the respective polyelectrolyte are attracted towards the gate electrode during transistor operation, while the polymer ions create a stable interface with the charged semiconductor channel. This suppresses electrochemical doping of the semiconductor bulk, which enables the transistors to fully operate in the field-effect mode. As a result, the transistors display relatively fast switching (≤ 100 µs). Interestingly, the switching speed of the transistors saturates as the channel length is reduced. This deviation from the downscaling rule is explained by that the ionic relaxation in the electrolyte limits the channel formation rather than the electronic transport in the semiconductor. Moreover, both unipolar and complementary integrated circuits based on polyelectrolyte-gated transistors are demonstrated. The complementary circuits operate at supply voltages down to 0.2 V, have a static power consumption of less than 2.5 nW per gate and display signal propagation delays down to 0.26 ms per stage. Hence, polyelectrolyte-gated circuits hold great promise for printed electronics applications driven by low-voltage and low-capacity power sources.

Collaboration


Dive into the Xavier Crispin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Zhao

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge