Xavier Vila
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xavier Vila.
Bioresource Technology | 2009
Ramon Ganigué; J. Gabarró; Alexandre Sànchez-Melsió; Maël Ruscalleda; Helio López; Xavier Vila; Jesús Colprim; M. Dolors Balaguer
The goal of this work was to demonstrate the feasibility of treating leachate with high ammonium concentrations using the SBR technology, as a preparative step for the treatment in an anammox reactor. The cycle was based on a step-feed strategy, alternating anoxic and aerobic conditions. Results of the study verified the viability of this process, treating an influent with concentration up to 5000 mg N-NH(4)(+) L(-1). An effluent with about 1500-2000 mg N-NH(4)(+) L(-1) and 2000-3000 mg N-NO(2)(-) L(-1) was achieved, presenting a nitrite to ammonium molar ratio close to the 1.32 required by the anammox. Furthermore, taking advantage of the biodegradable organic matter, the operational strategy allowed denitrifying about 200 mg N-NO(2)(-) L(-1). The extreme operational conditions during the long-term resulted on the selection of a sole AOB phylotype, identified by molecular techniques as Nitrosomonas sp. IWT514.
Photosynthesis Research | 1994
Xavier Vila; Charles A. Abella
The effect of light quality on the selection of natural populations of Green Sulfur Bacteria (Chlorobiaceae) is considered to be a classic factor in the determination of their ecological niches. From the comparison among phototrophic bacterial populations of lakes, it is shown that brown and green pigmented groups of Chlorobiaceae have a differential distribution depending on depth. Statistical analyses prove that green species, which dominate at shallow oxic/anoxic boundaries, are correlated to light spectra enriched in long wavelengths, while brown ones are found when light spectra are enriched in the central region of the spectrum, as in deeper lake layers. Physiological experiments have been made withChlorobium limicola andC. phaeobacteroides cultures placed under different light quality conditions, in order to verify these hypotheses made on a field data basis. Results show that red and white light has more positive effects on the green bacterium than on the brown. Blue and green light illuminations have opposite consequences. Therefore, the effect of shallow depths and Chromatiaceae shading—which also increases the proportion of long wavelengths in light spectra—benefits the bacteriochlorophyll-based strategies of green species. On the other hand, the carotenoid-based strategies of brown ones are favored by the light climates usually dominant at greater depths. Thus, brown species are considered to be singular adaptations of Chlorobiaceae to depth, where bacteriochlorophyll light-harvesting is strongly limited by light quality.
Hydrobiologia | 2001
Xavier Vila; Carles A. Abella
The effects of light spectral distribution on the composition of phototrophic microbial communities were analyzed in three metalimnetic levels (relative depth positions) of 41 lakes. Principal Component Analysis was used to compare light quality conditions reaching the populations of phototrophic micro-organisms containing different photosynthetic pigments. Results allowed to identify the optimal light quality conditions for the selection of each microbial group at their respective levels. Two general light-harvesting adaptations were defined, according to the wavebands that could be related to the selection of these microbial groups. The micro-organisms adapted to use red and near-infrared light – eukaryotic phytoplankton, Chloronema spp. and green-coloured Chlorobiaceae – predominated at shallow depths (specially in waters containing high gilvin contents) using their respective Qy absorption bands. The micro-organisms adapted to green-yellow light – phycoerythrin-containing cyanobacteria, Chromatiaceae and brown-coloured Chlorobiaceae – were dominant in deep metalimnetic communities. Laboratory experiments with cultures of Chlorobium limicola and C. phaeobacteroides growing under different light quality conditions showed that the green-coloured species had higher photosynthetic activity under red light, while the brown-coloured species was more active under green light. These results demonstrated that physiological differences between micro-organisms with different light-harvesting adaptations are responsible of their selection under different light quality conditions. This selection is experimented by Chlorobiaceae (as it was previously indicated by other investigators) at the deepest positions of the metalimnetic communities (level 3), but also by Chromatiaceae and Chloronema spp. at level 2 and by the eukaryotic phytoplankton and cyanobacteria at level 1.
Photosynthesis Research | 2002
Xavier Vila; Rémy Guyoneaud; Xavier P. Cristina; Jordi B. Figueras; Charles A. Abella
The ‘Salada de Chiprana’ (Chiprana Lake) is a hypersaline (30–73‰), permanent and shallow lake of endorheic origin in a semi-arid region of the Ebro depression (Aragon, Spain). Magnesium sulfate and sodium chloride represent the main salts of this athalassohaline environment. Anoxic conditions occurred periodically in the bottom layers of the lake during the study period. When stratified, high sulfide concentrations (up to 7 mM) were measured in the hypolimnion. Physical and chemical conditions gave rise to the development of very dense green sulfur bacteria blooms (10.7 mg l−1 of BChl c and 16.7 mg l−1 of BChl d) at 0.5–1 m from the bottom. Microscopic observations revealed that cells morphologically similar to Chlorobium vibrioforme were dominant in the phototrophic bacterial community, but Prosthecochloris aestuarii was also found sometimes at lower concentrations, as revealed by both microscopic observation and flow cytometric analyses. Deep agar dilution series allowed to obtain several axenic cultures of phototrophic bacteria. They were identified according to their morphology, pigment composition and phylogenetic relationships (16S rDNA sequence analysis). Two of the sequenced strains (CHP3401 and CHP3402) belonged to the green sulfur bacteria and were related to Prosthecochloris aestuarii SK413T and Chlorobium vibrioforme DSM260T, respectively. HPLC analyses of both natural samples and Chlorobium vibrioforme isolates indicated that these strains contained both BChl c and BChl d. Phylogenetic results suggested that Chlorobium vibrioforme strains DSM260T and CHP3402, all sequenced strains of Prosthecochloris aestuarii and strain CIB2401 constitute a separate cluster of green sulfur bacteria, all of them isolated from marine to hypersaline habitats.
Chemosphere | 2011
Joan Caliz; Xavier Vila; Esther Martí; Jordi Sierra; Johan Nordgren; Per-Eric Lindgren; Lluís Bañeras; Genoveva Montserrat
To highlight the effects of a variety of chlorophenols (CP) in relation to the response of an indigenous bacterial community, an agricultural Mediterranean calcareous soil has been studied in microcosms incubated under controlled laboratory conditions. Soil samples were artificially polluted with 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP), at concentrations ranging from 0.1 up to 5000 mg kg(-1). Both activity and composition of the microbial community were assessed during several weeks, respectively, by respirometric methods and PCR-DGGE analysis of extracted DNA and RNA. Significant decreases in soil respirometric values and changes in the bacterial community composition were observed at concentrations above 1000 mg kg(-1) MCP and TCP, and above 100 mg kg(-1) PCP. However, the persistence of several active bacterial populations in soil microcosms contaminated with high concentration of CP, as indicated by DGGE fingerprints, suggested the capacity of these native bacteria to survive in the presence of the pollutants, even without a previous adaptation or contact with them. The isolation of potential CP degraders was attempted by culture plating from microcosms incubated with high CP concentrations. Twenty-three different isolates were screened for their resistance to TCP and PCP. The most resistant isolates were identified as Kocuria palustris, Lysobacter gummosus, Bacillus sp. and Pseudomonas putida, according to 16S rRNA gene homology. In addition, these four isolates also showed the capacity to reduce the concentration of TCP and PCP from 15% to 30% after 5d of incubation in laboratory assays (initial pollutant concentration of 50 mg L(-1)). Isolate ITP29, which could be a novel species of Bacillus, has been revealed as the first known member in this bacterial group with potential for CP bioremediation applications, usually wide-spread in the soil natural communities, which has not been reported to date as a CP degrader.
Science of The Total Environment | 2011
Esther Martí; Jordi Sierra; Joan Caliz; Genoveva Montserrat; Xavier Vila; Maria Antonia Garau; Robert Cruañas
Three chlorophenolic compounds (2-chlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) were tested to assess their effects on two soils with different properties: a granitic soil (Haplic Arenosol) and a calcareous one (Calcaric Regosol). Different concentrations of the pollutants (ranging from 0.001 to 10,000 mg kg(-1) soil, d.w.) were assayed for their effects on soil microbial activity and composition, using manometric respirometry and PCR-DGGE analysis, respectively. Other ecotoxicity tests such as Lactuca sativa seedling growth in the contaminated soils and algal growth inhibition (Pseudokirschneriella subcapitata) in their water extracts were done. The behaviour of the pollutants in the soils with respect to biodegradability and volatilization was also investigated. In the Haplic Arenosol, volatilization is the main process affecting 2-chlorophenol. Degradation and fixation of this compound in the soil matrix are favored in the Calcaric Regosol. This is the least toxic pollutant assayed. For 2,4,6-trichlorophenol, the soil pH is a critical parameter in the toxicity assays due to the neutral pKa of the compound. It is toxic in the soil microbial activity assay, but some recovery of the biotic processes can be observed, particularly in the Calcaric Regosol. This compound is more toxic in the Haplic Arenosol than in the Calcaric Regosol. Pentachlorophenol is ionized in both soils due to its low pKa, increasing its water solubility. It is highly toxic to the soil microbiota, thus inhibiting respiration, biodegradation and other biotic dissipation processes. Plant and alga tests, were more sensitive than soil microbial tests, except for PCP. The microbial populations tend to show changes at lower concentrations than the microbial activity. Some soil types (abundant in the Mediterranean area), with alkaline pH and fine textures could show higher level of ecotoxicity for ionizable organic pollutants than the soil type recommended by the OECD in ecotoxicity testing.
FEMS Microbiology Ecology | 2011
Joan Caliz; Xavier Vila; Esther Martí; Jordi Sierra; Robert Cruañas; M. Antonia Garau; Genoveva Montserrat
The impact of 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) on the microbial community of an acidic forest soil was studied under controlled laboratory conditions by spiking microcosms with the pollutants at concentrations ranging from 0.1 to 5000 mg kg(-1). A decrease in the cumulative respirometric values and changes in the bacterial and fungal community composition were detected at 1000 mg MCP kg(-1), 100 mg TCP kg(-1) and 100 and 1000 mg PCP kg(-1). However, drastic effects on the microbial community were revealed only at higher concentrations of MCP and TCP, although the toxicity of PCP was expected to be stronger. The acidic condition of the soil presumably reduces bioavailability of PCP, leading to less pronounced effects than the other pollutants. This finding highlights the consideration of pollutant bioavailability in each environment to adequately assess contamination effects. Twenty-two different chlorophenol-resistant and potentially degrading microorganisms were isolated from highly polluted microcosms. The most resistant isolates were related to Burkholderia arboris, Bacillus circulans, Paenibacillus taichungensis, Luteibacter rhizovicina and Janibacter melonis. These isolates also showed the capacity to reduce the concentration of TCP or PCP between 15% and 35% after 5 days of incubation (initial concentration of 50 mg L(-1)). The isolate related to B. circulans is an atypical case of a member of the Firmicutes group for which chlorophenol-degrading capacities have been described.
Chemosphere | 2012
Joan Caliz; Genoveva Montserrat; Esther Martí; Jordi Sierra; Robert Cruañas; M. Antonia Garau; Xavier Triadó-Margarit; Xavier Vila
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg(-1) and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg(-1) Cr and 1000 mg kg(-1) Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.
Journal of Applied Microbiology | 1998
Xavier Vila; Xavier P. Cristina; Charles A. Abella; J.P Hurley
The spectral distribution of light reaching the populations of phototrophic bacteria in the metalimnion of stratified lakes is a selective factor determining the community composition. At deep metalimnia, light spectra are enriched in photons of the central part of the spectrum (500–600 nm) and benefit Chromatiaceae, brown‐coloured Chlorobiaceae and phyco‐erythrine‐containing cyanobacteria. Their carotenoids (okenone, spiriloxanthine, isorenieratene) and phycoerythrines allow these phototrophic bacteria to use light from the narrow central spectral wavebands. Otherwise, shallow metalimnetic communities receive light from a wide range (400–800 nm) and their composition is more diverse and usually enriched in green‐coloured Chlorobiaceae, which are unable to take advantage of the central part of the spectrum. Gilvin compounds (humic substances dissolved in water), have strong effects on light absorption, especially at shorter wavelengths. Therefore, light spectra in lakes with high gilvin contents are enriched in photons of long wavelengths (> 600 nm). Several Wisconsin lakes with different gilvin contents were studied during the period of summer stratification in 1994. Spectral distribution of light reaching their metalimnia changed with increasing gilvin contents (measured as g440). In the latter, phototrophic metalimnetic bacterial communities were absolutely dominated by green‐coloured Chlorobiaceae. Intermediate lakes could experiment changes on their community composition depending on variations in gilvin content, as happened in Little Long lake. The dynamics of this lake was studied during summer 1995. The ratio of green‐coloured species in respect to brown‐coloured species increased after a sudden increase of gilvin due to strong rainfall. These results agree with the photosynthetic advantage of green‐coloured Chlorobiaceae under red‐light illumination, inferred from laboratory experiments, and suggest a bacteriochlorophyll‐dependent, light‐harvesting strategy of these phototrophic sulphur bacteria.
Archives of Microbiology | 1998
Charles A. Abella; Xavier P. Cristina; A. Martinez; I.V. Pibernat; Xavier Vila
Two new phototrophic consortia, “Chlorochromatium lunatum” and “Pelochromatium selenoides”, were observed and collected in the hypolimnion of several dimictic lakes in Wisconsin and Michigan (USA). The two consortia had the same morphology but different pigment composition. The cells of the photosynthetic components of the consortia were half-moon-shaped. This morphology was used to differentiate them from the previously described motile phototrophic consortia “Chlorochromatium aggregatum” and “Pelochromatium roseum”. These phototrophic cells did not resemble any described unicellular green sulfur bacteria. The predominant pigments detected were bacteriochlorophyll d and chlorobactene for the green-colored “Clc. lunatum”, and bacteriochlorophyll e and isorenieratene for the brown-colored “Plc. selenoides”. Their pigment compositions and the presence of chlorosomes attached to the inner face of the cytoplasmic membrane in both kinds of photosynthetic cells confirmed this new half-moon-shaped morphotype as a green sulfur bacterium. Both consortia were found thriving in lakes with low concentrations of sulfide (< 60 μM), below the layers of “Clc. aggregatum” and “Plc. roseum”. The green consortia were observed in lakes where the oxic-anoxic interface was located at shallow depths (2–7 m), while the brown consortia were found at greater depths (8–16 m). The two newly described consortia were never detected together at the same depth in any lake.