Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xénia Latypova is active.

Publication


Featured researches published by Xénia Latypova.


Ageing Research Reviews | 2013

Tau protein kinases: Involvement in Alzheimer's disease

Ludovic Martin; Xénia Latypova; Cornelia M. Wilson; Amandine Magnaudeix; Marie-Laure Perrin; Catherine Yardin; Faraj Terro

Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimers disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.


Ageing Research Reviews | 2013

Tau protein phosphatases in Alzheimer's disease: The leading role of PP2A

Ludovic Martin; Xénia Latypova; Cornelia M. Wilson; Amandine Magnaudeix; Marie-Laure Perrin; Faraj Terro

Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby that might contributes to tau aggregation. Thus, understanding the regulation modes of tau dephosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these lesions in AD. Among the possible and relatively specific interventions that reverse tau phosphorylation is the stimulation of certain tau phosphatases. Here, we reviewed tau protein phosphatases, their physiological roles and regulation, their involvement in tau phosphorylation and the relevance to AD. We also reviewed the most common compounds acting on each tau phosphatase including PP2A.


American Journal of Human Genetics | 2017

De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder

Sébastien Küry; Thomas Besnard; Frédéric Ebstein; Tahir N. Khan; Tomasz Gambin; Jessica Douglas; Carlos A. Bacino; Stephan J. Sanders; Andrea Lehmann; Xénia Latypova; Kamal Khan; Mathilde Pacault; Stephanie Sacharow; Kimberly Glaser; Eric Bieth; Laurence Perrin-Sabourin; Marie Line Jacquemont; Megan T. Cho; Elizabeth Roeder; Anne Sophie Denommé-Pichon; Kristin G. Monaghan; Bo Yuan; Fan Xia; Sylvain Simon; Dominique Bonneau; Philippe Parent; Brigitte Gilbert-Dussardier; Sylvie Odent; Annick Toutain; Laurent Pasquier

Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.


Human Mutation | 2016

De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability

Bertrand Isidor; Sébastien Küry; Jill A. Rosenfeld; Thomas Besnard; Sébastien Schmitt; Shelagh Joss; Sally Davies; Robert Roger Lebel; Alex Henderson; Christian P. Schaaf; Haley Streff; Yaping Yang; Vani Jain; Nodoka Chida; Xénia Latypova; Cédric Le Caignec; Benjamin Cogné; Sandra Mercier; Marie Vincent; Estelle Colin; Dominique Bonneau; Anne-Sophie Denommé; P. Parent; Brigitte Gilbert-Dussardier; Sylvie Odent; Annick Toutain; Amélie Piton; Christian Dina; Audrey Donnart; Pierre Lindenbaum

A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment‐maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule‐kinetochore attachment. Through whole‐exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1‐associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore‐related disorders.


Journal of Human Genetics | 2017

Novel KCNB1 mutation associated with non-syndromic intellectual disability

Xénia Latypova; Naomichi Matsumoto; Cécile Vinceslas-Muller; Stéphane Bézieau; Bertrand Isidor; Noriko Miyake

Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel of crucial role in hippocampal neuron excitation homeostasis. KCNB1 mutations are known to cause early-onset infantile epilepsy. To date, 10 KCNB1 mutations have been described in 11 patients. Using whole-exome sequencing, we identified a novel de novo missense (c.1132G>C, p.V378L) KCNB1 mutation in a patient with global developmental delay, intellectual disability, severe speech impairment, but no episode of epilepsy until the lastly examined age of 6 years old. Furthermore, she showed neuropsychiatric symptoms including hyperactivity with irritability, heteroaggressiveness, psychomotor instability and agitation. Our observation might expand the phenotypic spectrum of KCNB1-related phenotypes and raises the issue of the occurrence of the epileptic phenotype.


Nature | 2018

RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6

Emmanuelle Szenker-Ravi; Umut Altunoglu; Marc Leushacke; Célia Bosso-Lefèvre; Muznah Khatoo; Hong Tran; Thomas Naert; Rivka Noelanders; Amin Hajamohideen; Claire Beneteau; Sergio B. de Sousa; Birsen Karaman; Xénia Latypova; Seher Basaran; Esra Börklü Yücel; Thong Teck Tan; Lena Vlaeminck; Shalini S. Nayak; Anju Shukla; Katta M. Girisha; Cédric Le Caignec; Natalia Soshnikova; Zehra Oya Uyguner; Kris Vleminckx; Nick Barker; Hülya Kayserili; Bruno Reversade

The four R-spondin secreted ligands (RSPO1–RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1–3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.Independently of the LGR4/5/6 receptors, RSPO2 acts as a direct antagonistic ligand to RNF43 and ZNRF3 during embryogenesis, and specifies the position and number of limbs that an embryo should form.


American Journal of Human Genetics | 2016

De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive

Mari Tokita; Alicia Braxton; Yunru Shao; Andrea M. Lewis; Marie Vincent; Sébastien Küry; Thomas Besnard; Bertrand Isidor; Xénia Latypova; Stéphane Bézieau; Pengfei Liu; Connie S. Motter; Catherine Ward Melver; Nathaniel H. Robin; Elena Infante; Marianne McGuire; Areeg El-Gharbawy; Rebecca Okashah Littlejohn; Scott D. McLean; Weimin Bi; Carlos A. Bacino; Seema R. Lalani; Daryl A. Scott; Christine M. Eng; Yaping Yang; Christian P. Schaaf; Magdalena Walkiewicz

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


European Journal of Human Genetics | 2017

Two novel variants in CNTNAP1 in two siblings presenting with congenital hypotonia and hypomyelinating neuropathy

Mathilde Nizon; Benjamin Cogné; Jean-Michel Vallat; Madeleine Joubert; Jean-Michel Liet; Laure Simon; Marie Vincent; Sébastien Küry; Pierre Boisseau; Sébastien Schmitt; Sandra Mercier; Claire Beneteau; Catherine Larrose; Marianne Coste; Xénia Latypova; Yann Péréon; Jean-Marie Mussini; Stéphane Bézieau; Bertrand Isidor

Homozygous frameshift variants in CNTNAP1 have recently been reported in patients with arthrogryposis and abnormal axon myelination. In two brothers with severe congenital hypotonia and foot deformities, we identified compound heterozygous variants in CNTNAP1, reporting the first causative missense variant, p.(Cys323Arg). Motor nerve conductions were markedly decreased. Nerve microscopical lesions confirmed a severe hypomyelinating process and showed loss of attachment sites of the myelin loops on the axons, which could be a characteristic of Caspr loss-of-function. We discuss the pathophysiology of the myelination process and we propose to consider this disorder as a congenital hypomyelinating neuropathy.


American Journal of Medical Genetics Part A | 2016

Mandibular dysostosis without microphthalmia caused by OTX2 deletion.

Xénia Latypova; Sylvain Bordereau; Alice Bleriot; Olivier Pichon; Damien Poulain; Annaig Briand; Cédric Le Caignec; Bertrand Isidor

Mutations in OTX2 are mostly identified in patients with anophthalmia/microphthalmia with variable severity. The OTX2 homeobox gene plays a crucial role in craniofacial morphogenesis during early embryo development. We report for the first time a patient with a mandibular dysostosis caused by a 120 kb deletion including the entire coding sequence of OTX2, identified by array CGH. No ocular malformations were identified after extended ophthalmologic examination. Our data refine the clinical spectrum associated with OTX2 mutations and suggests that OTX2 haploinsufficiency should be considered as a possible cause for isolated mandibular dysostosis.


Nature | 2018

Author Correction: RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6

Emmanuelle Szenker-Ravi; Umut Altunoglu; Marc Leushacke; Célia Bosso-Lefèvre; Muznah Khatoo; Hong Thi Tran; Thomas Naert; Rivka Noelanders; Amin Hajamohideen; Claire Beneteau; Sergio B. de Sousa; Birsen Karaman; Xénia Latypova; Seher Basaran; Esra Börklü Yücel; Thong Teck Tan; Lena Vlaminck; Shalini S. Nayak; Anju Shukla; Katta M. Girisha; Cédric Le Caignec; Natalia Soshnikova; Zehra Oya Uyguner; Kris Vleminckx; Nick Barker; Hülya Kayserili; Bruno Reversade

In this Letter, the surname of author Lena Vlaminck was misspelled ‘Vlaeminck’. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

Collaboration


Dive into the Xénia Latypova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annick Toutain

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge