Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xian-Man Zhang is active.

Publication


Featured researches published by Xian-Man Zhang.


Journal of Biological Chemistry | 2007

Suppression of Diacylglycerol Acyltransferase-2 (DGAT2), but Not DGAT1, with Antisense Oligonucleotides Reverses Diet-induced Hepatic Steatosis and Insulin Resistance

Cheol Soo Choi; David B. Savage; Ameya Kulkarni; Xing Xian Yu; Zhen-Xiang Liu; Katsutaro Morino; Sheene Kim; Alberto Distefano; Varman T. Samuel; Susanne Neschen; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Mario Kahn; Gary W. Cline; Sanjay K. Pandey; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase Cϵ activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase Cϵ activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.


Cell | 2008

N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake.

Matthew P. Gillum; Dongyan Zhang; Xian-Man Zhang; Derek M. Erion; Rachel A. Jamison; Cheolsoo Choi; Jianying Dong; Marya Shanabrough; Hillary R. Duenas; David W. Frederick; Jennifer J. Hsiao; Tamas L. Horvath; Chunmin C. Lo; Pat Tso; Gary W. Cline; Gerald I. Shulman

N-acylphosphatidylethanolamines (NAPEs) are a relatively abundant group of plasma lipids of unknown physiological significance. Here, we show that NAPEs are secreted into circulation from the small intestine in response to ingested fat and that systemic administration of the most abundant circulating NAPE, at physiologic doses, decreases food intake in rats without causing conditioned taste aversion. Furthermore, (14)C-radiolabeled NAPE enters the brain and is particularly concentrated in the hypothalamus, and intracerebroventricular infusions of nanomolar amounts of NAPE reduce food intake, collectively suggesting that its effects may be mediated through direct interactions with the central nervous system. Finally, chronic NAPE infusion results in a reduction of both food intake and body weight, suggesting that NAPE and long-acting NAPE analogs may be novel therapeutic targets for the treatment of obesity.


Science | 2015

Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats

Rachel J. Perry; Dongyan Zhang; Xian-Man Zhang; James L. Boyer; Gerald I. Shulman

Special delivery for fatty liver disease Nonalcoholic fatty liver disease is one of many unwelcome consequences of the global rise in obesity rates. Fat accumulation within the liver can lead to inflammation and cirrhosis, a predisposing factor for liver cancer. Treatment options are limited. Perry et al. revisit a mitochondrial uncoupling agent (2,4-dinitrophenol) that was used as a drug for weight loss in the 1930s but was discontinued because of serious toxicities. Encouragingly, an altered formulation of the drug that ensures its controlled release at low levels ameliorated fatty liver and diabetes in rodent models, without side effects. Science, this issue p. 1253 A modified version of a mitochondrial uncoupling agent can ameliorate fatty liver disease in rats, without apparent toxicity. Nonalcoholic fatty liver disease (NAFLD) is a major factor in the pathogenesis of type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). The mitochondrial protonophore 2,4 dinitrophenol (DNP) has beneficial effects on NAFLD, insulin resistance, and obesity in preclinical models but is too toxic for clinical use. We developed a controlled-release oral formulation of DNP, called CRMP (controlled-release mitochondrial protonophore), that produces mild hepatic mitochondrial uncoupling. In rat models, CRMP reduced hypertriglyceridemia, insulin resistance, hepatic steatosis, and diabetes. It also normalized plasma transaminase concentrations, ameliorated liver fibrosis, and improved hepatic protein synthetic function in a methionine/choline–deficient rat model of NASH. Chronic treatment with CRMP was not associated with any systemic toxicity. These data offer proof of concept that mild hepatic mitochondrial uncoupling may be a safe and effective therapy for the related epidemics of metabolic syndrome, T2D, and NASH.


Cell Metabolism | 2013

Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler.

Rachel J. Perry; Taehan Kim; Xian-Man Zhang; Hui-Young Lee; Dominik Pesta; Violeta B. Popov; Dongyan Zhang; Yasmeen Rahimi; Michael J. Jurczak; Gary W. Cline; David Spiegel; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D.


Hepatology | 2013

Role of patatin‐like phospholipase domain‐containing 3 on lipid‐induced hepatic steatosis and insulin resistance in rats

Naoki Kumashiro; Toru Yoshimura; Jennifer L. Cantley; Sachin Majumdar; Fitsum Guebre-Egziabher; Romy Kursawe; Daniel F. Vatner; Ioana Fat; Mario Kahn; Derek M. Erion; Xian-Man Zhang; Dongyan Zhang; Vara Prasad Manchem; Sanjay Bhanot; Glenn S. Gerhard; Kitt Falk Petersen; Gary W. Cline; Varman T. Samuel; Gerald I. Shulman

Genome‐wide array studies have associated the patatin‐like phospholipase domain‐containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high‐fat‐fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U‐13C]‐palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long‐chain fatty acyl‐CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%‐70% reduction in transacylation activity at the level of acyl‐CoA:1‐acylglycerol‐sn‐3‐phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2‐fold greater suppression of endogenous glucose production during the hyperinsulinemic‐euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. Conclusion: PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease‐associated hepatic insulin resistance. (HEPATOLOGY 2013)


Endocrinology | 2011

Characterization of the Hyperphagic Response to Dietary Fat in the MC4R Knockout Mouse

Dollada Srisai; Matthew P. Gillum; Brandon L. Panaro; Xian-Man Zhang; Naiphinich Kotchabhakdi; Gerald I. Shulman; Kate L. J. Ellacott; Roger D. Cone

Defective melanocortin signaling causes hyperphagic obesity in humans and the melanocortin-4 receptor knockout mouse (MC4R(-/-)). The human disease most commonly presents, however, as haploinsufficiency of the MC4R. This study validates the MC4R(+/-) mouse as a model of the human disease in that, like the MC4R(-/-), the MC4R(+/-) mouse also exhibits a sustained hyperphagic response to dietary fat. Furthermore, both saturated and monounsaturated fats elicit this response. N-acylphosphatidylethanolamine (NAPE) is a signaling lipid induced after several hours of high-fat feeding, that, if dysregulated, might explain the feeding behavior in melanocortin obesity syndrome. Remarkably, however, MC4R(-/-) mice produce elevated levels of NAPE and are fully responsive to the anorexigenic activity of NAPE and oleoylethanolamide. Interestingly, additional differences in N-acylethanolamine (NAE) biochemistry were seen in MC4R(-/-) animals, including reduced plasma NAE levels and elevated hypothalamic levels of fatty acid amide hydrolase expression. Thus, while reduced expression of NAPE or NAE does not explain the high-fat hyperphagia in the melanocortin obesity syndrome, alterations in this family of signaling lipids are evident. Analysis of the microstructure of feeding behavior in response to dietary fat in the MC4R(-/-) and MC4R(+/-) mice indicates that the high-fat hyperphagia involves defective satiation and an increased rate of food intake, suggesting defective satiety signaling and enhanced reward value of dietary fat.


Nature Communications | 2017

Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA)

Rachel J. Perry; Liang Peng; Gary W. Cline; Gina M. Butrico; Yongliang Wang; Xian-Man Zhang; Douglas L. Rothman; Kitt Falk Petersen; Gerald I. Shulman

Hepatic mitochondria play a central role in the regulation of intermediary metabolism and maintenance of normoglycemia, and there is great interest in assessing rates of hepatic mitochondrial citrate synthase flux (VCS) and pyruvate carboxylase flux (VPC) in vivo. Here, we show that a positional isotopomer NMR tracer analysis (PINTA) method can be used to non-invasively assess rates of VCS and VPC fluxes using a combined NMR/gas chromatography-mass spectrometry analysis of plasma following infusion of [3-13C]lactate and glucose tracer. PINTA measures VCS and VPC fluxes over a wide range of physiological conditions with minimal pyruvate cycling and detects increased hepatic VCS following treatment with a liver-targeted mitochondrial uncoupler. Finally, validation studies in humans demonstrate that the VPC/VCS ratio measured by PINTA is similar to that determined by in vivo NMR spectroscopy. This method will provide investigators with a relatively simple tool to non-invasively examine the role of altered hepatic mitochondrial metabolism.Liver mitochondrial metabolism plays an important role for glucose and lipid homeostasis and its alterations contribute to metabolic disorders, including fatty liver and diabetes. Here Perry et al. develop a method for the measurement of hepatic fluxes by using lactate and glucose tracers in combination with NMR spectroscopy.


Nature Medicine | 2018

Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo

Anila K. Madiraju; Yang Qiu; Rachel J. Perry; Yasmeen Rahimi; Xian-Man Zhang; Dongyan Zhang; João-Paulo G. Camporez; Gary W. Cline; Gina M. Butrico; Bruce E. Kemp; Gregori Casals; Gregory R. Steinberg; Daniel F. Vatner; Kitt Falk Petersen; Gerald I. Shulman

Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin’s antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.Using 13C-labeled substrates in vivo, this group shows that metformin inhibits mG3PDH to reduce hepatic gluconeogenesis and lower glycemia by altering the redox potential of the cytosol of hepatocytes rather than affecting substrate availability.


Biochemical Journal | 2018

In Vivo Studies on the Mechanism of Methylenecyclopropylacetic acid and Methylenecyclopropylglycine-Induced Hypoglycemia

Yang Qiu; Rachel J. Perry; João-Paulo G. Camporez; Xian-Man Zhang; Mario Kahn; Gary W. Cline; Gerald I. Shulman; Daniel F. Vatner

Exposure to the toxins methylene cyclopropyl acetic acid (MCPA) and methylene cyclopropyl glycine (MCPG) of unripe ackee and litchi fruit can lead to hypoglycemia and death; however, the molecular mechanisms by which MCPA and MCPG cause hypoglycemia have not been established in vivo To determine the in vivo mechanisms of action of these toxins, we infused them into conscious rodents and assessed rates of hepatic gluconeogenesis and ketogenesis, hepatic acyl-CoA and hepatic acetyl-CoA content, and hepatocellular energy charge. MCPG suppressed rates of hepatic β-oxidation as reflected by reductions in hepatic ketogenesis, reducing both short- and medium-chain hepatic acyl-CoA concentrations. Hepatic acetyl-CoA content decreased, and hepatic glucose production was inhibited. MCPA also suppressed β-oxidation of short-chain acyl-CoAs, rapidly inhibiting hepatic ketogenesis and hepatic glucose production, depleting hepatic acetyl-CoA content and ATP content, while increasing other short-chain acyl-CoAs. Utilizing a recently developed positional isotopomer NMR tracer analysis method, we demonstrated that MCPA-induced reductions in hepatic acetyl-CoA content were associated with a marked reduction of hepatic pyruvate carboxylase (PC) flux. Taken together, these data reveal the in vivo mechanisms of action of MCPA and MCPG: the hypoglycemia associated with ingestion of these toxins can be ascribed mostly to MCPA- or MCPG-induced reductions in hepatic PC flux due to inhibition of β-oxidation of short-chain acyl-CoAs by MCPA or inhibition of both short- and medium-chain acyl-CoAs by MCPG with resultant reductions in hepatic acetyl-CoA content, with an additional contribution to hypoglycemia through reduced hepatic ATP stores by MCPA.


Cell Metabolism | 2005

Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice

Susanne Neschen; Katsutaro Morino; Linda E. Hammond; Dongyan Zhang; Zhen Xiang Liu; Anthony J. Romanelli; Gary W. Cline; Rebecca L. Pongratz; Xian-Man Zhang; Cheol Soo Choi; Rosalind A. Coleman; Gerald I. Shulman

Collaboration


Dive into the Xian-Man Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge