Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel J. Perry is active.

Publication


Featured researches published by Rachel J. Perry.


Nature | 2014

The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes

Rachel J. Perry; Varman T. Samuel; Kitt Falk Petersen; Gerald I. Shulman

Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.


Nature | 2016

Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome

Rachel J. Perry; Liang Peng; Natasha A. Barry; Gary W. Cline; Dongyan Zhang; Rebecca L. Cardone; Kitt Falk Petersen; Richard G. Kibbey; Andrew L. Goodman; Gerald I. Shulman

Obesity, insulin resistance and the metabolic syndrome are associated with changes to the gut microbiota; however, the mechanism by which modifications to the gut microbiota might lead to these conditions is unknown. Here we show that increased production of acetate by an altered gut microbiota leads to activation of the parasympathetic nervous system which in turn promotes increased glucose-stimulated insulin secretion (GSIS), increased ghrelin secretion, hyperphagia, obesity and its related sequelae (Extended Data Fig. 1). Taken together, these data identify increased acetate production by a nutrient-gut microbiota interaction and subsequent parasympathetic activation as possible therapeutic targets for obesity.


Cell | 2015

Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes

Rachel J. Perry; Joao Paulo Camporez; Romy Kursawe; Paul M. Titchenell; Dongyan Zhang; Curtis J. Perry; Michael J. Jurczak; Abulizi Abudukadier; Myoung Sook Han; Xian-Man Zhang; Hai Bin Ruan; Xiaoyong Yang; Sonia Caprio; Susan M. Kaech; Hei Sook Sul; Morris J. Birnbaum; Roger J. Davis; Gary W. Cline; Kitt Falk Petersen; Gerald I. Shulman

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulins ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Nature Medicine | 2014

Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis

Rachel J. Perry; Xian-Man Zhang; Dongyan Zhang; Naoki Kumashiro; João-Paulo G. Camporez; Gary W. Cline; Douglas L. Rothman; Gerald I. Shulman

Leptin treatment reverses hyperglycemia in animal models of poorly controlled type 1 diabetes (T1D), spurring great interest in the possibility of treating patients with this hormone. The antidiabetic effect of leptin has been postulated to occur through suppression of glucagon production, suppression of glucagon responsiveness or both; however, there does not appear to be a direct effect of leptin on the pancreatic alpha cell. Thus, the mechanisms responsible for the antidiabetic effect of leptin remain poorly understood. We quantified liver-specific rates of hepatic gluconeogenesis and substrate oxidation in conjunction with rates of whole-body acetate, glycerol and fatty acid turnover in three rat models of poorly controlled diabetes, including a model of diabetic ketoacidosis. We show that the higher rates of hepatic gluconeogenesis in all these models could be attributed to hypoleptinemia-induced activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in higher rates of adipocyte lipolysis, hepatic conversion of glycerol to glucose through a substrate push mechanism and conversion of pyruvate to glucose through greater hepatic acetyl-CoA allosteric activation of pyruvate carboxylase flux. Notably, these effects could be dissociated from changes in plasma insulin and glucagon concentrations and hepatic gluconeogenic protein expression. All the altered systemic and hepatic metabolic fluxes could be mimicked by infusing rats with Intralipid or corticosterone and were corrected by leptin replacement. These data demonstrate a critical role for lipolysis and substrate delivery to the liver, secondary to hypoleptinemia and HPA axis activity, in promoting higher hepatic gluconeogenesis and hyperglycemia in poorly controlled diabetes.


Science | 2015

Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats

Rachel J. Perry; Dongyan Zhang; Xian-Man Zhang; James L. Boyer; Gerald I. Shulman

Special delivery for fatty liver disease Nonalcoholic fatty liver disease is one of many unwelcome consequences of the global rise in obesity rates. Fat accumulation within the liver can lead to inflammation and cirrhosis, a predisposing factor for liver cancer. Treatment options are limited. Perry et al. revisit a mitochondrial uncoupling agent (2,4-dinitrophenol) that was used as a drug for weight loss in the 1930s but was discontinued because of serious toxicities. Encouragingly, an altered formulation of the drug that ensures its controlled release at low levels ameliorated fatty liver and diabetes in rodent models, without side effects. Science, this issue p. 1253 A modified version of a mitochondrial uncoupling agent can ameliorate fatty liver disease in rats, without apparent toxicity. Nonalcoholic fatty liver disease (NAFLD) is a major factor in the pathogenesis of type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). The mitochondrial protonophore 2,4 dinitrophenol (DNP) has beneficial effects on NAFLD, insulin resistance, and obesity in preclinical models but is too toxic for clinical use. We developed a controlled-release oral formulation of DNP, called CRMP (controlled-release mitochondrial protonophore), that produces mild hepatic mitochondrial uncoupling. In rat models, CRMP reduced hypertriglyceridemia, insulin resistance, hepatic steatosis, and diabetes. It also normalized plasma transaminase concentrations, ameliorated liver fibrosis, and improved hepatic protein synthetic function in a methionine/choline–deficient rat model of NASH. Chronic treatment with CRMP was not associated with any systemic toxicity. These data offer proof of concept that mild hepatic mitochondrial uncoupling may be a safe and effective therapy for the related epidemics of metabolic syndrome, T2D, and NASH.


Cell Metabolism | 2013

Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler.

Rachel J. Perry; Taehan Kim; Xian-Man Zhang; Hui-Young Lee; Dominik Pesta; Violeta B. Popov; Dongyan Zhang; Yasmeen Rahimi; Michael J. Jurczak; Gary W. Cline; David Spiegel; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo

Thomas Galbo; Rachel J. Perry; Michael J. Jurczak; João-Paulo G. Camporez; Tiago C. Alves; Mario Kahn; Blas A. Guigni; Julie Serr; Dongyan Zhang; Sanjay Bhanot; Varman T. Samuel; Gerald I. Shulman

Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.


Nature Medicine | 2014

Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy.

Douglas E. Befroy; Rachel J. Perry; Nimit Jain; Sylvie Dufour; Gary W. Cline; Jeff K Trimmer; Julia Brosnan; Douglas L. Rothman; Kitt Falk Petersen; Gerald I. Shulman

Despite the central role of the liver in the regulation of glucose and lipid metabolism, there are currently no methods to directly assess hepatic oxidative metabolism in humans in vivo. By using a new 13C-labeling strategy in combination with 13C magnetic resonance spectroscopy, we show that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 μmol g−1 min−1 and 0.60 ± 0.11 μmol g−1 min−1, respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes, as well as for assessing the effectiveness of new therapies targeting these pathways in humans.


Nature Communications | 2015

FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis

Rachel J. Perry; Sang Won Lee; Lie Ma; Dongyan Zhang; Joseph Schlessinger; Gerald I. Shulman

Fibroblast growth factor-1 (FGF1) and FGF19 have been shown to improve glucose metabolism in diabetic rodents, but how this occurs is unknown. Here to investigate the mechanism of action of these growth factors, we perform intracerebroventricular (ICV) injections of recombinant FGF1 or FGF19 in an awake rat model of type 1 diabetes (T1D) and measure rates of whole-body lipolysis, hepatic acetyl CoA content, pyruvate carboxylase activity and hepatic glucose production. We show that ICV injection of FGF19 or FGF1 leads to a ∼60% reduction in hepatic glucose production, hepatic acetyl CoA content and whole-body lipolysis, which results from decreases in plasma ACTH and corticosterone concentrations. These effects are abrogated by an intra-arterial infusion of corticosterone. Taken together these studies identify suppression of the HPA axis and ensuing reductions in hepatic acetyl CoA content as a common mechanism responsible for mediating the acute, insulin-independent, glucose-lowering effects of FGF1 and FGF19 in rodents with poorly controlled T1D.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance

Yasmeen Rahimi; João-Paulo G. Camporez; Max C. Petersen; Dominik Pesta; Rachel J. Perry; Michael J. Jurczak; Gary W. Cline; Gerald I. Shulman

Significance Defects in mitochondrial substrate selection, mediated by inhibition of the pyruvate dehydrogenase complex (PDH), have been proposed to be a major contributor to lipid-induced muscle insulin resistance. To examine this hypothesis, we assessed insulin action in a genetic mouse model of constitutive PDH activation. Surprisingly, we found that preferential glucose oxidation in skeletal muscle in this mouse was accompanied by muscle insulin resistance. Muscle insulin resistance could be attributed to increased glucose oxidation at the expense of reduced fatty acid oxidation, leading to increased intramyocellular lipid accumulation and diacylglycerol-PKC-θ–mediated reductions in proximal insulin signaling. These findings have important clinical implications for novel antidiabetic therapies currently in development that activate PDH and enhance glucose oxidation in muscle. The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To genetically examine this hypothesis we assessed relative rates of pyruvate dehydrogenase flux/mitochondrial oxidative flux and insulin-stimulated rates of muscle glucose metabolism in awake mice lacking pyruvate dehydrogenase kinase 2 and 4 [double knockout (DKO)], which results in constitutively activated PDH. Surprisingly, increased glucose oxidation in DKO muscle was accompanied by reduced insulin-stimulated muscle glucose uptake. Preferential myocellular glucose utilization in DKO mice decreased fatty acid oxidation, resulting in increased reesterification of acyl-CoAs into diacylglycerol and triacylglycerol, with subsequent activation of PKC-θ and inhibition of insulin signaling in muscle. In contrast, other putative mediators of muscle insulin resistance, including muscle acylcarnitines, ceramides, reactive oxygen species production, and oxidative stress markers, were not increased. These findings demonstrate that modulation of oxidative substrate selection to increase muscle glucose utilization surprisingly results in muscle insulin resistance, offering genetic evidence against the glucose-fatty acid cycle hypothesis of muscle insulin resistance.

Collaboration


Dive into the Rachel J. Perry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian-Man Zhang

Northwest University (United States)

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge