Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xian Ying Meng is active.

Publication


Featured researches published by Xian Ying Meng.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Wolbachia as a bacteriocyte-associated nutritional mutualist

Takahiro Hosokawa; Ryuichi Koga; Yoshitomo Kikuchi; Xian Ying Meng; Takema Fukatsu

Many insects are dependent on bacterial symbionts that provide essential nutrients (ex. aphid–Buchnera and tsetse–Wiglesworthia associations), wherein the symbionts are harbored in specific cells called bacteriocytes that constitute a symbiotic organ bacteriome. Facultative and parasitic bacterial symbionts like Wolbachia have been regarded as evolutionarily distinct from such obligate nutritional mutualists. However, we discovered that, in the bedbug Cimex lectularius, Wolbachia resides in a bacteriome and appears to be an obligate nutritional mutualist. Two bacterial symbionts, a Wolbachia strain and an unnamed γ-proteobacterium, were identified from different strains of the bedbug. The Wolbachia symbiont was detected from all of the insects examined whereas the γ-proteobacterium was found in a part of them. The Wolbachia symbiont was specifically localized in the bacteriomes and vertically transmitted via the somatic stem cell niche of germalia to oocytes, infecting the incipient symbiotic organ at an early stage of the embryogenesis. Elimination of the Wolbachia symbiont resulted in retarded growth and sterility of the host insect. These deficiencies were rescued by oral supplementation of B vitamins, confirming the essential nutritional role of the symbiont for the host. The estimated genome size of the Wolbachia symbiont was around 1.3 Mb, which was almost equivalent to the genome sizes of parasitic Wolbachia strains of other insects. These results indicate that bacteriocyte-associated nutritional mutualism can evolve from facultative and prevalent microbial associates like Wolbachia, highlighting a previously unknown aspect of the parasitism-mutualism evolutionary continuum.


BMC Biology | 2009

Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs

Yoshitomo Kikuchi; Takahiro Hosokawa; Naruo Nikoh; Xian Ying Meng; Yoichi Kamagata; Takema Fukatsu

BackgroundHost-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs.ResultsPhylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host lineages. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts.ConclusionComprehensive studies of the acanthosomatid bacterial symbiosis provide new insights into the genomic evolution of extracellular symbiotic bacteria: host-symbiont co-speciation and drastic genome reduction can occur not only in endocellular symbiotic associations but also in extracellular ones. We suggest that many more such cases might be discovered in future surveys.


Applied and Environmental Microbiology | 2010

Primary Gut Symbiont and Secondary, Sodalis-Allied Symbiont of the Scutellerid Stinkbug Cantao ocellatus

Nahomi Kaiwa; Takahiro Hosokawa; Yoshitomo Kikuchi; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Motomi Ito; Takema Fukatsu

ABSTRACT Symbiotic associations with midgut bacteria have been commonly found in diverse phytophagous heteropteran groups, where microbiological characterization of the symbiotic bacteria has been restricted to the stinkbug families Acanthosomatidae, Plataspidae, Pentatomidae, Alydidae, and Pyrrhocoridae. Here we investigated the midgut bacterial symbiont of Cantao ocellatus, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified from the insects of different geographic origins. The bacterium was detected in all 116 insects collected from 9 natural host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, not closely related to gut symbionts of other stinkbugs. Diagnostic PCR and in situ hybridization demonstrated that the bacterium is extracellularly located in the midgut 4th section with crypts. Electron microscopy of the crypts revealed a peculiar histological configuration at the host-symbiont interface. Egg sterilization experiments confirmed that the bacterium is vertically transmitted to stinkbug nymphs via egg surface contamination. In addition to the gut symbiont, some individuals of C. ocellatus harbored another bacterial symbiont in their gonads, which was closely related to Sodalis glossinidius, the secondary endosymbiont of tsetse flies. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.


Applied and Environmental Microbiology | 2010

Candidatus Curculioniphilus buchneri, a Novel Clade of Bacterial Endocellular Symbionts from Weevils of the Genus Curculio

Hirokazu Toju; Takahiro Hosokawa; Ryuichi Koga; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Takema Fukatsu

ABSTRACT Here we investigated the bacterial endosymbionts of weevils of the genus Curculio. From all four species of Curculio weevils examined, a novel group of bacterial gene sequences were consistently identified. Molecular phylogenetic analyses demonstrated that the sequences formed a distinct clade in the Gammaproteobacteria, which was not related to previously known groups of weevil endosymbionts such as Nardonella spp. and Sodalis-allied symbionts. In situ hybridization revealed that the bacterium was intracellularly harbored in a bacteriome associated with larval midgut. In adult females, the bacterium was localized in the germalia at the tip of each overiole, suggesting vertical transmission via ovarial passage. Diagnostic PCR surveys detected high prevalence of the bacterial infection in natural host populations. Electron microscopy identified the reduced cell wall of the bacterial cells, and the bacterial genes exhibited AT-biased nucleotide composition and accelerated molecular evolution, which are suggestive of a long-lasting endosymbiotic association. On the basis of these results, we conclude that the novel endocellular bacteria represent the primary symbiont of Curculio weevils and proposed the designation “Candidatus Curculioniphilus buchneri.” In addition to “Ca. Curculioniphilus,” we identified Sodalis-allied gammaproteobacterial endosymbionts from the chestnut weevil, Curculio sikkimensis, which exhibited partial infection frequencies in host insect populations and neither AT-biased nucleotide composition nor accelerated molecular evolution. We suggest that such Sodalis-allied secondary symbionts in weevils might provide a potential source for symbiont replacements, as has occurred in an ancestor of Sitophilus grain weevils.


Applied and Environmental Microbiology | 2012

Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods.

Yu Matsuura; Yoshitomo Kikuchi; Xian Ying Meng; Ryuichi Koga; Takema Fukatsu

ABSTRACT Here we report a novel clade of secondary endosymbionts associated with insects and other arthropods. Seed bugs of the genus Nysius (Hemiptera: Lygaeidae) harbor the primary gammaproteobacterial symbiont Schneideria nysicola within a pair of bacteriomes in the abdomen. Our survey of Nysius species for their facultative bacterial associates consistently yielded a novel type of alphaproteobacterial 16S rRNA gene sequence in addition to those of Wolbachia. Diagnostic PCR survey of 343 individuals representing 24 populations of four Nysius species revealed overall detection rates of the alphaproteobacteria at 77.6% in Nysius plebeius, 87.7% in Nysius sp. 1, 81.0% in Nysius sp. 2, and 100% in Nysius expressus. Further survey of diverse stinkbugs representing 24 families, 191 species, and 582 individuals detected the alphaproteobacteria from an additional 12 species representing six families. Molecular phylogenetic analysis showed that the alphaproteobacteria from the stinkbugs form a distinct and coherent monophyletic group in the order Rickettsiales together with several uncharacterized endosymbionts from fleas and ticks. The alphaproteobacterial symbiont clade was allied to bacterial clades such as the endosymbionts of acanthamoebae, the endosymbionts of cnidarians, and Midichloria spp., the mitochondrion-associated endosymbionts of ticks. In situ hybridization and electron microscopy identified small filamentous bacterial cells in various tissues of N. plebeius, including the bacteriome and ovary. The concentrated localization of the symbiont cells at the anterior pole of oocytes indicated its vertical transmission route through host insect generations. The designation “Candidatus Lariskella arthropodarum” is proposed for the endosymbiont clade.


The ISME Journal | 2012

Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs

Yu Matsuura; Yoshitomo Kikuchi; Takahiro Hosokawa; Ryuichi Koga; Xian Ying Meng; Yoichi Kamagata; Naruo Nikoh; Takema Fukatsu

We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the ‘infection zone’ in the middle of each germarium and in the ‘symbiont ball’ at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to ‘Candidatus Kleidoceria schneideri’, the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6u2009Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host–symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation ‘Candidatus Schneideria nysicola’ is proposed for the endosymbiont clade.


Zoological Science | 2011

Bacterial Symbionts of the Giant Jewel Stinkbug Eucorysses grandis (Hemiptera: Scutelleridae)

Nahomi Kaiwa; Takahiro Hosokawa; Yoshitomo Kikuchi; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Motomi Ito; Takema Fukatsu

Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.


Current Biology | 2014

Symbiont-Supplemented Maternal Investment Underpinning Host’s Ecological Adaptation

Nahomi Kaiwa; Takahiro Hosokawa; Naruo Nikoh; Masahiko Tanahashi; Minoru Moriyama; Xian Ying Meng; Taro Maeda; Katsushi Yamaguchi; Shuji Shigenobu; Motomi Ito; Takema Fukatsu

Maternal investment for offsprings growth and survival is widespread among diverse organisms. Vertical symbiont transmission via maternal passage is also pivotal for offsprings growth and survival in many organisms. Hence, it is expected that vertical symbiont transmission may coevolve with various organismal traits concerning maternal investment in offspring. Here we report a novel phenotypic syndrome entailing morphological, histological, behavioral, and ecological specializations for maternal investment and vertical symbiont transmission in stinkbugs of the family Urostylididae. Adult females develop huge ovaries exaggerated for polysaccharide excretion, possess novel ovipositor-associated organs for vertical transmission of a bacterial symbiont (Candidatus Tachikawaea gelatinosa), and lay eggs covered with voluminous symbiont-supplemented jelly. Newborns hatch in midwinter, feed solely on the jelly, acquire the symbiont, and grow during winter. In spring, the insects start feeding on plant sap, wherein the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the hosts diet. The reduced symbiont genome and host-symbiont cospeciation indicate their obligate association over evolutionary time. Experimental deprivation of the jelly results in nymphal mortality, whereas restoration of the jelly leads to recovered nymphal growth, confirming that the jelly supports nymphal growth in winter. Chemical analyses demonstrate that the galactan-based jelly contains a sufficient quantity of amino acids to sustain nymphal growth to the third instar. The versatile biological roles of the symbiont-containing egg-covering jelly highlight intricate evolutionary interactions between maternal resource investment and vertical symbiont transmission, which are commonly important for offsprings growth, survival, and ecological adaptation.


The ISME Journal | 2012

Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies

Takahiro Hosokawa; Naruo Nikoh; Ryuichi Koga; Masahiko Satô; Masahiko Tanahashi; Xian Ying Meng; Takema Fukatsu

Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host–symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ∼0.76u2009Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host–symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation ‘Candidatus Aschnera chinzeii’ is proposed for the endosymbiont clade.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Small genome symbiont underlies cuticle hardness in beetles

Hisashi Anbutsu; Minoru Moriyama; Naruo Nikoh; Takahiro Hosokawa; Ryo Futahashi; Masahiko Tanahashi; Xian Ying Meng; Takashi Kuriwada; Naoki Mori; Kenshiro Oshima; Masahira Hattori; Manabu Fujie; Noriyuki Satoh; Taro Maeda; Shuji Shigenobu; Ryuichi Koga; Takema Fukatsu

Significance Beetles are successful in the terrestrial ecosystem, which is attributable to, at least partly, their highly sclerotized exoskeleton. Here, we report a bacterial symbiont extremely specialized for underpinning the beetle’s hardness. The ancient endosymbiont Nardonella associated with weevils has an extremely small genome devoted to a single biological function, tyrosine provisioning, which is needed for insect’s cuticle formation and hardening. Notably, only the final step reaction of the tyrosine synthesis pathway is complemented by host-encoded aminotransferases up-regulated in the bacteriome, highlighting a highly focused aspect of the host–symbiont metabolic integrity. Both symbiont suppression by an antibiotic and RNA interference of the host aminotransferases induce reddish and soft weevils, verifying the pivotal role of the symbiosis for the beetle’s hardness. Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle’s cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway, identifying tyrosine provisioning as Nardonella’s sole biological role. Weevils are armored with hard cuticle, tyrosine is the principal precursor for cuticle formation, and experimental suppression of Nardonella resulted in emergence of reddish and soft weevils with low tyrosine titer, confirming the importance of Nardonella-mediated tyrosine production for host’s cuticle formation and hardening. Notably, Nardonella’s tyrosine synthesis pathway was incomplete, lacking the final step transaminase gene. RNA sequencing identified host’s aminotransferase genes up-regulated in the bacteriome. RNA interference targeting the aminotransferase genes induced reddish and soft weevils with low tyrosine titer, verifying host’s final step regulation of the tyrosine synthesis pathway. Our finding highlights an impressively intimate and focused aspect of the host–symbiont metabolic integrity via streamlined evolution for a single biological function of ecological relevance.

Collaboration


Dive into the Xian Ying Meng's collaboration.

Top Co-Authors

Avatar

Takema Fukatsu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takahiro Hosokawa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryuichi Koga

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshitomo Kikuchi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiko Tanahashi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobutada Kimura

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge