Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang-dong Li is active.

Publication


Featured researches published by Xiang-dong Li.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va

Xiang-dong Li; Hyun Suk Jung; Qizhi Wang; Reiko Ikebe; Roger Craig; Mitsuo Ikebe

Myosin Va is a well known processive motor involved in transport of organelles. A tail-inhibition model is generally accepted for the regulation of myosin Va: inhibited myosin Va is in a folded conformation such that the tail domain interacts with and inhibits myosin Va motor activity. Recent studies indicate that it is the C-terminal globular tail domain (GTD) that directly inhibits the motor activity of myosin Va. In the present study, we identified a conserved acidic residue in the motor domain (Asp-136) and two conserved basic residues in the GTD (Lys-1706 and Lys-1779) as critical residues for this regulation. Alanine mutations of these conserved charged residues not only abolished the inhibition of motor activity by the GTD but also prevented myosin Va from forming a folded conformation. We propose that Asp-136 forms ionic interactions with Lys-1706 and Lys-1779. This assignment locates the GTD-binding site in a pocket of the motor domain, formed by the N-terminal domain, converter, and the calmodulin in the first IQ motif. We propose that binding of the GTD to the motor domain prevents the movement of the converter/lever arm during ATP hydrolysis cycle, thus inhibiting the chemical cycle of the motor domain.


Environmental Microbiology | 2015

A small molecule species specifically inhibits Fusarium myosin I

Chengqi Zhang; Yun Chen; Yanni Yin; Huan-Hong Ji; Won-Bo Shim; Yi-Ping Hou; Mingguo Zhou; Xiang-dong Li; Zhonghua Ma

Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F. graminearum (FgMyo1). FgMyo1 is essential for F. graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F. graminearum resistance to JS399-19. In addition, transformation of F. graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms.


Journal of Biological Chemistry | 2012

Calmodulin bound to the first IQ motif is responsible for calcium-dependent regulation of myosin 5a

Zekuan Lu; Mei Shen; Yang Cao; Hai-Man Zhang; Lin-Lin Yao; Xiang-dong Li

Background: Myosin 5a ATPase activity is regulated by calcium. Results: The ATPase of the truncated myosin 5a having the motor domain and the first IQ motif is inhibited by its tail in a calcium-dependent manner. Conclusion: The calmodulin in the first IQ motif of myosin 5a is responsible for calcium-dependent regulation. Significance: This presents a new paradigm for calcium regulation of unconventional myosins. Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca2+-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca2+ and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca2+ regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca2+-dependent regulation and how the head-tail interaction is affected by Ca2+. Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca2+ regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca2+ regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca2+ induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.


Journal of Biological Chemistry | 2014

Mouse Myosin-19 is a Plus-end-directed, High-duty Ratio Molecular Motor

Zekuan Lu; Xiao-Nan Ma; Hai-Man Zhang; Huan-Hong Ji; Hao Ding; Jie Zhang; Dan Luo; Yujie Sun; Xiang-dong Li

Background: Myosin-19 is strongly associated with mitochondria and plays a role in the transport of mitochondria. Results: The light chains of myosin-19 are the regulatory light chains of myosin-2. ADP release is rate-limiting for acto-Myo19 ATPase and ADP strongly inhibits myosin-19 motor function. Conclusion: Myosin-19 is a plus-end-directed, high-duty ratio molecular motor. Significance: Myosin-19 functions as a molecular motor. Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament.


Cellular and Molecular Life Sciences | 1993

Experimental study on photocount statistics of the ultraweak photon emission from some living organisms

Xu Shen; Feng Liu; Xiang-dong Li

The hypothesis that biophotons display a high degree of coherence was tested by measuring photocount statistics (PCS) of the ultraweak photon emission from three living organisms (cucumber seedling, mungbean seedling and soybean rhizobium bacteroids) with a high-sensitivity single-photon counter. For comparison, the same experiments were performed for laser beam, randomized laser beam, chemiluminescence from autoxidation of luminol and the dark counts of the equipment. Photocount distributions, close to Poissonian, were observed for the three tested biological systems but not for the pure chemiluminescence of luminol.


Scientific Reports | 2015

Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a

Lin-Lin Yao; Qing-Juan Cao; Hai-Man Zhang; Jie Zhang; Yang Cao; Xiang-dong Li

The tail-inhibition model is generally accepted for the regulation of myosin-5a motor function. Inhibited myosin-5a is in a folded conformation in which its globular tail domain (GTD) interacts with its head and inhibits its motor function, and high Ca2+ or cargo binding may reduce the interaction between the GTD and the head of myosin-5a, thus activating motor activity. Although it is well established that myosin-5a motor function is regulated by Ca2+, little is known about the effects of cargo binding. We previously reported that melanophilin (Mlph), a myosin-5a cargo-binding protein, is capable of activating myosin-5a motor function. Here, we report that Mlph-GTBDP, a 26 amino-acid-long peptide of Mlph, is sufficient for activating myosin-5a motor function. We demonstrate that Mlph-GTBDP abolishes the interaction between the head and GTD of myosin-5a, thereby inducing a folded-to-extended conformation transition for myosin-5a and activating its motor function. Mutagenesis of the GTD shows that the GTD uses two distinct, non-overlapping regions to interact with Mlph-GTBDP and the head of myosin-5a. We propose that the GTD is an allosteric protein and that Mlph allosterically inhibits the interaction between the GTD and head of myosin-5a, thereby activating myosin-5a motor function.


Biochemistry | 2014

Drosophila Myosin-XX Functions as an Actin-Binding Protein To Facilitate the Interaction between Zyx102 and Actin

Yang Cao; Howard D. White; Xiang-dong Li

The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.


Biochemistry | 2013

Cooperation between the Two Heads of Smooth Muscle Myosin Is Essential for Full Activation of the Motor Function by Phosphorylation

Rong-Na Ma; Katsuhide Mabuchi; Jing Li; Zekuan Lu; Chih-Lueh Albert Wang; Xiang-dong Li

The motor function of smooth muscle myosin (SmM) is regulated by phosphorylation of the regulatory light chain (RLC) bound to the neck region of the SmM heavy chain. It is generally accepted that unphosphorylated RLC induces interactions between the two heads and between the head and the tail, thus inhibiting the motor activity of SmM, whereas phosphorylation of RLC interrupts those interactions, thus reversing the inhibition and restoring the motor activity to the maximal value. One assumption of this model is that single-headed SmM is fully active regardless of phosphorylation. To re-evaluate this model, we produced a number of SmM constructs with coiled coils of various lengths and examined their structure and regulation. With these constructs we identified the segment in the coiled-coil key for the formation of a stable double-headed structure. In agreement with the current model, we found that the actin-activated ATPase activity of unphosphorylated SmM increased with shortening of the coiled-coil. However, contrary to the current model, we found that the actin-activated ATPase activity of phosphorylated SmM decreased with shortening coiled-coil and only the stable double-headed SmM was fully activated by phosphorylation. These results indicate that single-headed SmM is neither fully active nor fully inhibited. Based on our findings, we propose that cooperation between the two heads is essential, not only for the inhibition of unphosphorylated SmM, but also for the activation of phosphorylated SmM.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor

Mei Shen; Ning Zhang; Sanduo Zheng; Wen-Bo Zhang; Hai-Man Zhang; Zekuan Lu; Qian Peter Su; Yujie Sun; Keqiong Ye; Xiang-dong Li

Significance Myosin-5a is a molecular motor that functions as a cargo transporter in cells. The motor function of myosin-5a is regulated by calcium via the calmodulin bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a. Here, we solve the crystal structure of a truncated myosin-5a containing the motor domain and the IQ1 complexed with calcium-bound calmodulin. Comparison of the structures of the IQ1 complexed with calmodulin with or without bound calcium reveals the calcium-induced conformational changes of calmodulin. We demonstrated that calmodulin continuously associates with the IQ1 during that calcium transition and that the IQ1 binding substantially changes the thermodynamic and kinetics of calcium transition in calmodulin. These findings provide insight into the mechanism by which calcium regulates myosin-5a. The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals.


Journal of Biological Chemistry | 2016

Identification of the Isoform-specific Interactions Between the Tail and the Head of Class V Myosin

Lin-Lin Yao; Mei Shen; Zekuan Lu; Mitsuo Ikebe; Xiang-dong Li

Vertebrates have three isoforms of class V myosin (Myo5), Myo5a, Myo5b, and Myo5c, which are involved in transport of multiple cargoes. It is well established that the motor functions of Myo5a and Myo5b are regulated by a tail inhibition mechanism. Here we found that the motor function of Myo5c was also inhibited by its globular tail domain (GTD), and this inhibition was abolished by high Ca2+, indicating that the tail inhibition mechanism is conserved in vertebrate Myo5. Interestingly, we found that Myo5a-GTD and Myo5c-GTD were not interchangeable in terms of inhibition of motor function, indicating isoform-specific interactions between the GTD and the head of Myo5. To identify the isoform-specific interactions, we produced a number of Myo5 chimeras by swapping the corresponding regions of Myo5a and Myo5c. We found that Myo5a-GTD, with its H11-H12 loop being substituted with that of Myo5c, was able to inhibit the ATPase activity of Myo5c and that Myo5a-GTD was able to inhibit the ATPase activity of Myo5c-S1 and Myo5c-HMM only when their IQ1 motif was substituted with that of Myo5a. Those results indicate that the H11-H12 loop in the GTD and the IQ1 motif in the head dictate the isoform-specific interactions between the GTD and head of Myo5. Because the IQ1 motif is wrapped by calmodulin, whose conformation is influenced by the sequence of the IQ1 motif, we proposed that the calmodulin bound to the IQ1 motif interacts with the H11-H12 loop of the GTD in the inhibited state of Myo5.

Collaboration


Dive into the Xiang-dong Li's collaboration.

Top Co-Authors

Avatar

Hai-Man Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zekuan Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lin-Lin Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mei Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huan-Hong Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong-Na Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sanduo Zheng

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen-Bo Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge