Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang S. Ye is active.

Publication


Featured researches published by Xiang S. Ye.


Nature Medicine | 2015

Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes

Razvan Cristescu; Jeeyun Lee; Michael Nebozhyn; Kyoung-Mee Kim; Jason C. Ting; Swee Seong Wong; Jiangang Liu; Yong Gang Yue; Jian Wang; Kun Yu; Xiang S. Ye; In-Gu Do; Shawn Liu; Lara Gong; Jake Fu; Jason Gang Jin; Min Gew Choi; Tae Sung Sohn; Joon-Ho Lee; Jae Moon Bae; Seung Tae Kim; Se Hoon Park; Insuk Sohn; Sin-Ho Jung; Patrick Tan; Ronghua Chen; James C. Hardwick; Won Ki Kang; Mark Ayers; Dai Hongyue

Gastric cancer, a leading cause of cancer-related deaths, is a heterogeneous disease. We aim to establish clinically relevant molecular subtypes that would encompass this heterogeneity and provide useful clinical information. We use gene expression data to describe four molecular subtypes linked to distinct patterns of molecular alterations, disease progression and prognosis. The mesenchymal-like type includes diffuse-subtype tumors with the worst prognosis, the tendency to occur at an earlier age and the highest recurrence frequency (63%) of the four subtypes. Microsatellite-unstable tumors are hyper-mutated intestinal-subtype tumors occurring in the antrum; these have the best overall prognosis and the lowest frequency of recurrence (22%) of the four subtypes. The tumor protein 53 (TP53)-active and TP53-inactive types include patients with intermediate prognosis and recurrence rates (with respect to the other two subtypes), with the TP53-active group showing better prognosis. We describe key molecular alterations in each of the four subtypes using targeted sequencing and genome-wide copy number microarrays. We validate these subtypes in independent cohorts in order to provide a consistent and unified framework for further clinical and preclinical translational research.


Eukaryotic Cell | 2004

Discovery of cercosporamide, a known antifungal natural product, as a selective Pkc1 kinase inhibitor through high-throughput screening.

Andrea Sussman; Karen L. Huss; Li-Chun Chio; Steve Heidler; Margaret Shaw; Doreen Ma; Guoxin Zhu; Robert M. Campbell; Tae-Sik Park; Palaniappan Kulanthaivel; John E. Scott; John W. Carpenter; Mark A. Strege; Matthew David Belvo; James R. Swartling; Anthony S. Fischl; Wu-Kuang Yeh; Chuan Shih; Xiang S. Ye

ABSTRACT The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a β-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and β-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.


Nature Communications | 2014

Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing

Swee Seong Wong; Kyoung-Mee Kim; Jason C. Ting; Kun Yu; Jake Fu; Shawn Liu; Razvan Cristescu; Michael Nebozhyn; Lara Gong; Yong Gang Yue; Jian Wang; Chen Ronghua; Andrey Loboda; James C. Hardwick; Xiaoqiao Liu; Hongyue Dai; Jason Gang Jin; Xiang S. Ye; So Young Kang; In Gu Do; Joon Oh Park; Tae Sung Sohn; Christoph Reinhard; Jeeyun Lee; Sung Kim; Amit Aggarwal

Gastric cancer (GC) is the second most common cause of cancer-related deaths. It is known to be a heterogeneous disease with several molecular and histological subtypes. Here we perform whole-genome sequencing of 49 GCs with diffuse (N=31) and intestinal (N=18) histological subtypes and identify three mutational signatures, impacting TpT, CpG and TpCp[A/T] nucleotides. The diffuse-type GCs show significantly lower clonality and smaller numbers of somatic and structural variants compared with intestinal subtype. We further divide the diffuse subtype into one with infrequent genetic changes/low clonality and another with relatively higher clonality and mutations impacting TpT dinucleotide. Notably, we discover frequent and exclusive mutations in Ephrins and SLIT/ROBO signalling pathway genes. Overall, this study delivers new insights into the mutational heterogeneity underlying distinct histologic subtypes of GC that could have important implications for future research in the diagnosis and treatment of GC.


Journal of Biological Chemistry | 2010

Cdk1 Activity Is Required for Mitotic Activation of Aurora A during G2/M Transition of Human Cells

Robert D. Van Horn; Shaoyou Chu; Li Fan; Tinggui Yin; Jian Du; Richard P. Beckmann; Mary M. Mader; Guoxin Zhu; John E. Toth; Kerry Blanchard; Xiang S. Ye

In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.


Molecular and Cellular Biology | 2010

p38 Mitogen-Activated Protein Kinase Promotes Cell Survival in Response to DNA Damage but Is Not Required for the G2 DNA Damage Checkpoint in Human Cancer Cells

Mark S. Phong; Robert D. Van Horn; Shuyu Li; Gregory Tucker-Kellogg; Uttam Surana; Xiang S. Ye

ABSTRACT p38 mitogen-activated protein kinase (MAPK) is rapidly activated by stresses and is believed to play an important role in the stress response. While Chk1 is known to mediate G2 DNA damage checkpoint control, p38 was also reported to have an essential function in this checkpoint control. Here, we have investigated further the roles of p38 and Chk1 in the G2 DNA damage checkpoint in cancer cells. We find that although p38 activation is strongly induced by DNA damage, its activity is not required for the G2 DNA damage checkpoint. In contrast, Chk1 kinase is responsible for the execution of G2 DNA damage checkpoint control in p53-deficient cells. The inhibition of p38 activity has no effect on Chk1 activation and γ-H2AX expression. Global gene expression profiling of cancer cells in response to tumor necrosis factor alpha (TNF-α) revealed that p38 plays a strong prosurvival role through the coordinated downregulation of proapoptotic genes and upregulation of prosurvival genes. We show that the inhibition of p38 activity during G2 DNA damage checkpoint arrest triggers apoptosis in a p53-independent manner with a concurrent decrease in the level of Bcl2 family proteins. Our results suggest that although p38 MAPK is not required for the G2 DNA damage checkpoint function, it plays an important prosurvival role during the G2 DNA damage checkpoint response through the upregulation of the Bcl2 family proteins.


Molecular Cancer Therapeutics | 2014

Characterization of LY2228820 Dimesylate, a Potent and Selective Inhibitor of p38 MAPK with Antitumor Activity

Robert M. Campbell; Bryan D. Anderson; Nathan A. Brooks; Harold B. Brooks; Edward M. Chan; Alfonso De Dios; Raymond Gilmour; Jeremy R. Graff; Enrique Jambrina; Mary M. Mader; Denis J. McCann; Songqing Na; Stephen Parsons; Susan E. Pratt; Chuan Shih; Louis Stancato; James J. Starling; Courtney M. Tate; Juan A. Velasco; Yong Wang; Xiang S. Ye

p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1β (IL-1β), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance. LY2228820 dimesylate (hereafter LY2228820), a trisubstituted imidazole derivative, is a potent and selective, ATP-competitive inhibitor of the α- and β-isoforms of p38 MAPK in vitro (IC50 = 5.3 and 3.2 nmol/L, respectively). In cell-based assays, LY2228820 potently and selectively inhibited phosphorylation of MK2 (Thr334) in anisomycin-stimulated HeLa cells (at 9.8 nmol/L by Western blot analysis) and anisomycin-induced mouse RAW264.7 macrophages (IC50 = 35.3 nmol/L) with no changes in phosphorylation of p38α MAPK, JNK, ERK1/2, c-Jun, ATF2, or c-Myc ≤ 10 μmol/L. LY2228820 also reduced TNF-α secretion by lipopolysaccharide/IFN-γ–stimulated macrophages (IC50 = 6.3 nmol/L). In mice transplanted with B16-F10 melanoma, tumor phospho-MK2 (p-MK2) was inhibited by LY2228820 in a dose-dependent manner [threshold effective dose (TED)70 = 11.2 mg/kg]. Significant target inhibition (>40% reduction in p-MK2) was maintained for 4 to 8 hours following a single 10 mg/kg oral dose. LY2228820 produced significant tumor growth delay in multiple in vivo cancer models (melanoma, non–small cell lung cancer, ovarian, glioma, myeloma, breast). In summary, LY2228820 is a p38 MAPK inhibitor, which has been optimized for potency, selectivity, drug-like properties (such as oral bioavailability), and efficacy in animal models of human cancer. Mol Cancer Ther; 13(2); 364–74. ©2013 AACR.


Molecular Cancer Therapeutics | 2014

A Novel CDK9 Inhibitor Shows Potent Antitumor Efficacy in Preclinical Hematologic Tumor Models

Tinggui Yin; María José Lallena; Emiko L. Kreklau; Kevin Robert Fales; Santiago Carballares; Raquel Torrres; Graham N. Wishart; Rose T. Ajamie; Damien M. Cronier; Phillip Iversen; Timothy I. Meier; Robert Foreman; Douglas J. Zeckner; Sean Sissons; Bart W. Halstead; Aimee B. Lin; Gregory P. Donoho; Yue-Wei Qian; Shuyu Li; Song Wu; Amit Aggarwal; Xiang S. Ye; James J. Starling; Richard B. Gaynor; Alfonso De Dios; Jian Du

DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies. Mol Cancer Ther; 13(6); 1442–56. ©2014 AACR.


Chinese Journal of Cancer | 2016

Genomic alterations and molecular subtypes of gastric cancers in Asians.

Xiang S. Ye; Chunping Yu; Amit Aggarwal; Christoph Reinhard

Gastric cancer (GC) is a highly heterogenic disease, and it is the second leading cause of cancer death in the world. Common chemotherapies are not very effective for GC, which often presents as an advanced or metastatic disease at diagnosis. Treatment options are limited, and the prognosis for advanced GCs is poor. The landscape of genomic alterations in GCs has recently been characterized by several international cancer genome programs, including studies that focused exclusively on GCs in Asians. These studies identified major recurrent driver mutations and provided new insights into the mutational heterogeneity and genetic profiles of GCs. An analysis of gene expression data by the Asian Cancer Research Group (ACRG) further uncovered four distinct molecular subtypes with well-defined clinical features and their intersections with actionable genetic alterations to which targeted therapeutic agents are either already available or under clinical development. In this article, we review the ACRG GC project. We also discuss the implications of the genetic and molecular findings from various GC genomic studies with respect to developing more precise diagnoses and treatment approaches for GCs.


Molecular Cancer Therapeutics | 2015

A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models

Xiang S. Ye; Li Fan; Robert D. Van Horn; Ryuichiro Nakai; Yoshihisa Ohta; Shiro Akinaga; Chikara Murakata; Yoshinori Yamashita; Tinggui Yin; Kelly M. Credille; Gregory P. Donoho; Farhana F. Merzoug; Heng Li; Amit Aggarwal; Kerry Blanchard; Eric Westin

Intervention of cancer cell mitosis by antitubulin drugs is among the most effective cancer chemotherapies. However, antitubulin drugs have dose-limiting side effects due to important functions of microtubules in resting normal cells and are often rendered ineffective by rapid emergence of resistance. Antimitotic agents with different mechanisms of action and improved safety profiles are needed as new treatment options. Mitosis-specific kinesin Eg5 represents an attractive anticancer target for discovering such new antimitotic agents, because Eg5 is essential only in mitotic progression and has no roles in resting, nondividing cells. Here, we show that a novel selective Eg5 inhibitor, LY2523355, has broad target-mediated anticancer activity in vitro and in vivo. LY2523355 arrests cancer cells at mitosis and causes rapid cell death that requires sustained spindle-assembly checkpoint (SAC) activation with a required threshold concentration. In vivo efficacy of LY2523355 is highly dose/schedule-dependent, achieving complete remission in a number of xenograft tumor models, including patient-derived xenograft (PDX) tumor models. We further establish that histone-H3 phosphorylation of tumor and proliferating skin cells is a promising pharmacodynamic biomarker for in vivo anticancer activity of LY2523355. Mol Cancer Ther; 14(11); 2463–72. ©2015 AACR.


Molecular Cancer Therapeutics | 2009

Abstract A62: A novel Eg5 inhibitor that causes mitotic arrest leading to rapid cancer cell death shows broad‐spectrum antitumor activity in preclinical xenograft tumor models

Xiang S. Ye; Li Fan; Robert D. Van Horn; Tinggui Yin; Ryuichiro Nakai; Yoshihisa Ohta; Kelly M. Credille; Gregory P. Donoho; Shiro Akinaga; Chikara Murakata; Everett J. Perkins; Scott Ocheltree; Yoshinori Yamashita; Kerry Blanchard; Eric Westin

Antitubulin agents including taxanes and vincas that target mitosis of rapidly dividing cancer cells are among the most effective cancer therapies in current clinical use. However, these antitubulin agents also have debilitating side effects that are dose‐limiting, such as neuropathy, due to their disruption of the normal microtubule functions in resting cells including neuronal cells. Eg5 is an evolutionarily conserved mitosis‐specific kinesin essential for bipolar mitotic spindle formation and has no roles in microtubule functions of resting cells. Inactivation of Eg5 causes mitotic arrest of proliferating cells, resulting in formation of monopolar spindles. Targeting Eg5 for cancer treatment thus represents an attractive strategy that has the potential to maximize the anticancer efficacy by inhibiting cancer cell mitosis while minimizing debilitating side effects associated with antitubulins. Here we describe a selective ATP‐non competitive small molecule inhibitor of human Eg5 kinesin. The Eg5 inhibitor shows no effects on microtubule dynamics in cell‐free assays and arrests cells specifically at mitosis with monopolar spindles, resulting in rapid cancer cell death. Growth inhibition assays against a panel of 21 cancer cell lines shows that the Eg5 inhibitor has potent and broad‐spectrum activity with IC50 values ranged from 0.55 nM to 14.2 nM. Quantitative live cell imaging and high content imaging reveal that the Eg5 inhibitor has a threshold concentration activity and kills cancer cells specifically at mitosis in a time/cell cycle, but not concentration above the threshold,‐dependent manner. Consistent with the in vitro activities, the Eg5 inhibitor shows broad‐spectrum antitumor activity in preclinical xenograft tumor models representing major human cancer histologies also including drug resistant tumors and demonstrates superiority as compared to several chemotherapeutic agents targeting G2/M. Furthermore, its in vivo antitumor activity is highly schedule‐dependent with a clear threshold dose effect, as expected from in vitro observations. Indeed, the Eg5 inhibitor exhibits a robust PK/PD relationship in antitumor activity and its antitumor activity is associated with mitotic arrest of cancer cells and subsequent cell death. The Eg5 inhibitor is currently being evaluated in Phase I studies. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):A62.

Collaboration


Dive into the Xiang S. Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Du

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge