Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangbin Xu is active.

Publication


Featured researches published by Xiangbin Xu.


Circulation Research | 2009

Role of Ca2+/Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase 1 in Mediating Cardiomyocyte Hypertrophy

Clint L. Miller; Masayoshi Oikawa; Yu-Jun Cai; Andrew P. Wojtovich; David J. Nagel; Xiangbin Xu; Haodong Xu; Vince Florio; Sergei D. Rybalkin; Joseph A. Beavo; Yiu Fai Chen; Jian Dong Li; Burns C. Blaxall; Jun Ichi Abe; Chen Yan

Rationale: Cyclic nucleotide phosphodiesterases (PDEs) through the degradation of cGMP play critical roles in maintaining cardiomyocyte homeostasis. Ca2+/calmodulin (CaM)–activated cGMP-hydrolyzing PDE1 family may play a pivotal role in balancing intracellular Ca2+/CaM and cGMP signaling; however, its function in cardiomyocytes is unknown. Objective: Herein, we investigate the role of Ca2+/CaM–stimulated PDE1 in regulating pathological cardiomyocyte hypertrophy in neonatal and adult rat ventricular myocytes and in the heart in vivo. Methods and Results: Inhibition of PDE1 activity using a PDE1-selective inhibitor, IC86340, or downregulation of PDE1A using siRNA prevented phenylephrine induced pathological myocyte hypertrophy and hypertrophic marker expression in neonatal and adult rat ventricular myocytes. Importantly, administration of the PDE1 inhibitor IC86340 attenuated cardiac hypertrophy induced by chronic isoproterenol infusion in vivo. Both PDE1A and PDE1C mRNA and protein were detected in human hearts; however, PDE1A expression was conserved in rodent hearts. Moreover, PDE1A expression was significantly upregulated in vivo in the heart and myocytes from various pathological hypertrophy animal models and in vitro in isolated neonatal and adult rat ventricular myocytes treated with neurohumoral stimuli such as angiotensin II (Ang II) and isoproterenol. Furthermore, PDE1A plays a critical role in phenylephrine-induced reduction of intracellular cGMP- and cGMP-dependent protein kinase (PKG) activity and thereby cardiomyocyte hypertrophy in vitro. Conclusions: These results elucidate a novel role for Ca2+/CaM–stimulated PDE1, particularly PDE1A, in regulating pathological cardiomyocyte hypertrophy via a cGMP/PKG–dependent mechanism, thereby demonstrating Ca2+ and cGMP signaling cross-talk during cardiac hypertrophy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism

Kye-Im Jeon; Xiangbin Xu; Toru Aizawa; Jae Hyang Lim; Hirofumi Jono; Dong Seok Kwon; Jun Ichi Abe; Bradford C. Berk; Jian Dong Li; Chen Yan

Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.


Nature Communications | 2012

CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt.

Jae Hyang Lim; Hirofumi Jono; Kensei Komatsu; Chang Hoon Woo; Ji-Yun Lee; Masanori Miyata; Takashi Matsuno; Xiangbin Xu; Yuxian Huang; Wenhong Zhang; Soo Hyun Park; Yu Il Kim; Yoo Duk Choi; Huahao Shen; Kyung Sun Heo; Haodong Xu; Patricia A. Bourne; Tomoaki Koga; Haidong Xu; Chen Yan; Binghe Wang; Lin Feng Chen; Xin-Hua Feng; Jian-Dong Li

Lung injury, whether induced by infection or caustic chemicals, initiates a series of complex wound-healing responses. If uncontrolled, these responses may lead to fibrotic lung diseases and loss of function. Thus, resolution of lung injury must be tightly regulated. The key regulatory proteins required for tightly controlling the resolution of lung injury have yet to be identified. Here we show that loss of deubiquitinase CYLD led to the development of lung fibrosis in mice after infection with Streptococcus pneumoniae. CYLD inhibited transforming growth factor-β-signalling and prevented lung fibrosis by decreasing the stability of Smad3 in an E3 ligase carboxy terminus of Hsc70-interacting protein-dependent manner. Moreover, CYLD decreases Smad3 stability by deubiquitinating K63-polyubiquitinated Akt. Together, our results unveil a role for CYLD in tightly regulating the resolution of lung injury and preventing fibrosis by deubiquitinating Akt. These studies may help develop new therapeutic strategies for preventing lung fibrosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Angiotensin II Stimulates Protein Kinase D-Dependent Histone Deacetylase 5 Phosphorylation and Nuclear Export Leading to Vascular Smooth Muscle Cell Hypertrophy

Xiangbin Xu; Chang Hoon Ha; Chelsea Wong; Weiye Wang; Angelika Hausser; Klaus Pfizenmaier; Eric N. Olson; Timothy A. McKinsey; Zheng Gen Jin

Background—Angiotensin II (Ang II) induces the phenotypic modulation and hypertrophy of vascular smooth muscle cells (VSMCs), which is implicated in the pathogenesis of hypertension, atherosclerosis, and diabetes. In this study, we tested the hypothesis that histone deacetylases 5 (HDAC5) and its signal pathway play a role in Ang II–induced VSMC hypertrophy. Methods and Results—VSMCs were isolated from the thoracic aortas of male Sprague-Dawley rats and treated with Ang II. We found that Ang II rapidly stimulated phosphorylation of HDAC5 at Serine259/498 residues in a time- and dose- dependent manner. Ang II receptor-1, protein kinase C, and protein kinase D1 (PKD1) mediated HDAC5 phosphorylation. Furthermore, we observed that Ang II stimulated HDAC5 nuclear export, which was dependent on its PKD1-dependent phosphorylation. Consequently, both inhibiting PKD1 and HDAC5 Serine259/498 to Alanine mutant significantly attenuated Ang II–induced myocyte enhancer factor-2 (MEF2) transcriptional activity and protein synthesis in VSMCs. Conclusion—These findings demonstrate for the first time that PKD1-dependent HDAC5 phosphorylation and nuclear export mediates Ang II–induced MEF2 activation and VSMC hypertrophy, and suggest that PKD1 and HDAC5 may emerge as potential targets for the treatment of pathological vascular hypertrophy.


Journal of Biological Chemistry | 2008

Tumor Suppressor Cylindromatosis Acts as a Negative Regulator for Streptococcus pneumoniae-induced NFAT Signaling

Tomoaki Koga; Jae Hyang Lim; Hirofumi Jono; Un Hwan Ha; Haidong Xu; Hajime Ishinaga; Saori Morino; Xiangbin Xu; Chen Yan; Hirofumi Kai; Jian Dong Li

Gram-positive bacterium Streptococcus pneumoniae is an important human pathogen that colonizes the upper respiratory tract and is also the major cause of morbidity and mortality worldwide. S. pneumoniae causes invasive diseases such as pneumonia, meningitis, and otitis media. Despite the importance of pneumococcal diseases, little is known about the molecular mechanisms by which S. pneumoniae-induced inflammation is regulated, especially the negative regulatory mechanisms. Here we show that S. pneumoniae activates nuclear factor of activated T cells (NFAT) signaling pathway and the subsequent up-regulation of inflammatory mediators via a key pneumococcal virulence factor, pneumolysin. We also demonstrate that S. pneumoniae activates NFAT transcription factor independently of Toll-like receptors 2 and 4. Moreover, S. pneumoniae induces NFAT activation via both Ca2+-calcineurin and transforming growth factor-β-activated kinase 1 (TAK1)-mitogen-activated protein kinase kinase (MKK) 3/6-p38α/β-dependent signaling pathways. Interestingly, we found for the first time that tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for S. pneumoniae-induced NFAT signaling pathway via a deubiquitination-dependent mechanism. Finally, we showed that CYLD interacts with and deubiquitinates TAK1 to negatively regulate the activation of the downstream MKK3/6-p38α/β pathway. Our studies thus bring new insights into the molecular pathogenesis of S. pneumoniae infections through the NFAT-dependent mechanism and further identify CYLD as a negative regulator for NFAT signaling, thereby opening up new therapeutic targets for these diseases.


Peptides | 2010

Hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in the rat

Jinjiang Pang; Qihua Xu; Xiangbin Xu; Hongchao Yin; Rong-Kun Xu; Shu Guo; Wei Hao; Luya Wang; Chen Chen; Ji-Min Cao

Growth hormone-releasing peptides (GHRP) and ghrelin are synthetic and natural ligands of growth hormone secretagogue receptor (GHSR) respectively and are shown to exert protective actions on cardiac dysfunction. Because ghrelin has been reported to inhibit proinflammatory responses in human endothelium and GHSR has been identified in blood vessels, we hypothesized that GHRP could alleviate the development of atherosclerosis (As). Atherosclearosis was induced by a short period (4 days) of vitamin D(3) and chronic (three months) intragastric feeding of high fat emulsion (containing 0.5% propylthiouracil) in adult SD rats. Some As rats received chronic hexarelin (a variant of GHRP) injection (SC BID, 30 days) and normal rats received placebo as control. Significant atherosclerosis developed in animals fed with the emulsion. Serum total cholesterol and LDL-c increased, and HDL-c and aortic nitric oxide (NO) decreased significantly in As group. Hexarelin suppressed the formation of atherosclerotic plaques and neointima, partially reversed serum HDL-c/LDL-c ratio and increased the levels of serum NO and aortic mRNAs of eNOS, GHSR and CD36 in As rats. Hexarelin also decreased [(3)H]-TdR incorporation in cultured vascular smooth muscle cell (VSMC) and calcium sedimentation in aortic wall. Furthermore, foam cell formation induced by ox-LDL was decreased by hexarelin. In conclusion, hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in rats, possibly through upregulating HDL-c/LDL-c ratio, vascular NO production and downregulating the VSMC proliferation, aortic calcium sedimentation and foam cell formation. These novel anti-atherosclerotic actions of hexarelin suggest that the peptide might have a clinical potential in treating atherosclerosis.


Circulation | 2009

G-Protein–Coupled Receptor Kinase Interacting Protein-1 Is Required for Pulmonary Vascular Development

Jinjiang Pang; Ryan Hoefen; Gloria S. Pryhuber; Jing Wang; Guoyong Yin; R. James White; Xiangbin Xu; Michael R. O'Dell; Amy Mohan; Heidi Michaloski; Michael P. Massett; Chen Yan; Bradford C. Berk

Background— The G-protein–coupled receptor kinase interacting protein-1 (GIT1) is a multidomain scaffold protein that participates in many cellular functions including receptor internalization, focal adhesion remodeling, and signaling by both G-protein–coupled receptors and tyrosine kinase receptors. However, there have been no in vivo studies of GIT1 function to date. Methods and Results— To determine essential functions of GIT1 in vivo, we generated a traditional GIT1 knockout mouse. GIT1 knockout mice exhibited ≈60% perinatal mortality. Pathological examination showed that the major abnormality in GIT1 knockout mice was impaired lung development characterized by markedly reduced numbers of pulmonary blood vessels and increased alveolar spaces. Given that vascular endothelial growth factor (VEGF) is essential for pulmonary vascular development, we investigated the role of GIT1 in VEGF signaling in the lung and cultured endothelial cells. Because activation of phospholipase-Cγ (PLCγ) and extracellular signal-regulated kinases 1/2 (ERK1/2) by angiotensin II requires GIT1, we hypothesized that GIT1 mediates VEGF-dependent pulmonary angiogenesis by modulating PLCγ and ERK1/2 activity in endothelial cells. In cultured endothelial cells, knockdown of GIT1 decreased VEGF-mediated phosphorylation of PLCγ and ERK1/2. PLCγ and ERK1/2 activity in lungs from GIT1 knockout mice was reduced postnatally. Conclusions— Our data support a critical role for GIT1 in pulmonary vascular development by regulating VEGF-induced PLCγ and ERK1/2 activation.


Biochemical Journal | 2009

Synergistic induction of nuclear factor-κB by transforming growth factor-β and tumour necrosis factor-α is mediated by protein kinase A-dependent RelA acetylation

Hajime Ishinaga; Hirofumi Jono; Jae Hyang Lim; Kensei Komatsu; Xiangbin Xu; Jiyun Lee; Chang Hoon Woo; Haidong Xu; Xin-Hua Feng; Lin Feng Chen; Chen Yan; Jian Dong Li

The TGF-beta (transforming growth factor-beta) pathway represents an important signalling pathway involved in regulating diverse biological processes, including cell proliferation, differentiation and inflammation. Despite the critical role for TGF-beta in inflammatory responses, its role in regulating NF-kappaB (nuclear factor-kappaB)-dependent inflammatory responses still remains unknown. In the present study we show that TGF-beta1 synergizes with proinflammatory cytokine TNF-alpha (tumour necrosis factor-alpha) to induce NF-kappaB activation and the resultant inflammatory response in vitro and in vivo. TGF-beta1 synergistically enhances TNF-alpha-induced NF-kappaB DNA binding activity via induction of RelA acetylation. Moreover, synergistic enhancement of TNF-alpha-induced RelA acetylation and DNA-binding activity by TGF-beta1 is mediated by PKA (protein kinase A). Thus the present study reveals a novel role for TGF-beta in inflammatory responses and provides new insight into the regulation of NF-kappaB by TGF-beta signalling.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat

Xiangbin Xu; Fan Ding; Jinjiang Pang; Xue Gao; Rong-Kun Xu; Wei Hao; Ji-Min Cao; Chen Chen

Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis.


Journal of Molecular and Cellular Cardiology | 2011

G protein coupled receptor kinase 2 interacting protein 1 (GIT1) is a novel regulator of mitochondrial biogenesis in heart

Jinjiang Pang; Xiangbin Xu; Michael Getman; Xi Shi; Stephen L. Belmonte; Heidi Michaloski; Amy Mohan; Burns C. Blaxall; Bradford C. Berk

G-protein-coupled receptor (GPCR)-kinase interacting protein-1 (GIT1) is a multi-function scaffold protein. However, little is known about its physiological role in the heart. Here we sought to identify the cardiac function of GIT1. Global GIT1 knockout (KO) mice were generated and exhibited significant cardiac hypertrophy that progressed to heart failure. Electron microscopy revealed that the hearts of GIT1 KO mice demonstrated significant morphological abnormities in mitochondria, including decreased mitochondrial volume density, cristae density and increased vacuoles. Moreover, mitochondrial biogenesis-related gene peroxisome proliferator-activated receptor γ (PPARγ) co-activator-1α (PGC-1α), PGC-1β, mitochondrial transcription factor A (Tfam) expression, and total mitochondrial DNA were remarkably decreased in hearts of GIT1 KO mice. These animals also had impaired mitochondrial function, as evidenced by reduced ATP production and dissipated mitochondrial membrane potential (Ψ(m)) in adult cardiomyocytes. Concordant with these mitochondrial observations, GIT1 KO mice showed enhanced cardiomyocyte apoptosis and cardiac dysfunction. In conclusion, our findings identify GIT1 as a new regulator of mitochondrial biogenesis and function, which is necessary for postnatal cardiac maturation.

Collaboration


Dive into the Xiangbin Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Dong Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ji-Min Cao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jae Hyang Lim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Chen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Rong-Kun Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hirofumi Jono

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge