Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangli Wu is active.

Publication


Featured researches published by Xiangli Wu.


PLOS ONE | 2013

Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis.

Mengran Zhao; Chenyang Huang; Qiang Chen; Xiangli Wu; Jibin Qu; Jinxia Zhang

The genetic diversity of 123 wild strains of Pleurotus eryngii var. tuoliensis, which were collected from nine geographical locations in Yumin, Tuoli, and Qinghe counties in the Xinjiang Autonomous Region of China, was analysed using two molecular marker systems (inter-simple sequence repeat and start codon targeted). At the variety level, the percentage of polymorphic loci and Nei’s gene diversity index for P. eryngii var. tuoliensis was 96.32% and 0.238, respectively. At the population level, Nei’s gene diversity index ranged from 0.149 to 0.218 with an average of 0.186, and Shannons information index ranged from 0.213 to 0.339 with an average of 0.284. These results revealed the abundant genetic variability in the wild resources of P. eryngii var. tuoliensis. Nei’s gene diversity analysis indicated that the genetic variance was mainly found within individual geographical populations, and the analysis of molecular variance revealed low but significant genetic differentiation among local and regional populations. The limited gene flow (Nm = 1.794) was inferred as a major reason for the extent of genetic differentiation of P. eryngii var. tuoliensis. The results of Mantel tests showed that the genetic distance among geographical populations of P. eryngii var. tuoliensis was positively correlated with the geographical distance and the longitudinal distances (rGo = 0.789 and rLn = 0.873, respectively), which indicates that geographical isolation is an important factor for the observed genetic differentiation. Nine geographical populations of P. eryngii var. tuoliensis were divided into three groups according to their geographical origins, which revealed that the genetic diversity was closely related to the geographical distribution of this wild fungus.


Scientific Reports | 2016

The famous cultivated mushroom Bailinggu is a separate species of the Pleurotus eryngii species complex.

Mengran Zhao; Jinxia Zhang; Qiang Chen; Xiangli Wu; Wei Gao; Wangqiu Deng; Chenyang Huang

The mushroom of the genus Pleurotus in western China, called Bailinggu, is a precious edible fungus with high economic value. However, its taxonomical position is unclear. Some researchers regard it as a variety of P. eryngii, namely P. eryngii var. tuoliensis, whereas others consider it to be a subspecies of P. eryngii, viz. P. eryngii subsp. tuoliensis. A total of 51 samples representing seven genetic groups of the genus Pleurotus were subjected to a phylogenetic analysis of partial sequences of the translation elongation factor 1 alpha gene (ef1a), the RNA polymerase II largest subunit gene (rpb1), the RNA polymerase II second largest subunit gene (rpb2) and nuc rDNA internal transcribed spacers (ITS). Our data indicate that the mushroom Bailinggu is a lineage independent of P. eryngii and should be lifted as its own species, namely P. tuoliensis. In addition, its known distribution range consists of both western China and Iran.


Biomedical Chromatography | 2014

A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae

Xiangli Wu; Chenyang Huang; Qiang Chen; Hexiang Wang; Jinxia Zhang

A novel laccase with a molecular mass of 67 kDa was isolated from the fermentation broth of Pleurotus cornucopiae through ion exchange chromatography and gel filtration. The optimal pH and temperature for the laccase was pH 4.2 and 30°C, respectively. The laccase activity was remarkably inhibited by Fe(3+) and Hg(2+) , while it was stimulated by Cu(2+) and Pb(2+) . It inhibited proliferation of the hepatoma cells HepG2 and the breast cancer cells MCF-7, and the activity of HIV-I reverse transcriptase with IC50 values of 3.9, 7.6 and 3.7 μM, respectively.


PLOS ONE | 2017

High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia

Zhiheng Qiu; Xiangli Wu; Jinxia Zhang; Chenyang Huang

Trichoderma asperellum is one of the species which can be isolated from contaminated Pleurotus ostreatus cultivation substrate with green mold disease. This study focused on the relationship between high temperature and infectivity of T. asperellum to P. ostreatus. Antagonism experiments between T. asperellum and P. ostreatus mycelia revealed that high temperature-treated P. ostreatus mycelia were more easily infected by T. asperellum and covered by conidia. Microscopic observation also showed that P. ostreatus mycelia treated with high temperature could adsorb more T. asperellum conidia. Furthermore, conidia obtained from T. asperellum mycelia grown at 36°C featured higher germination rate compared with that incubated at 28°C. High temperature-treated T. asperellum mycelia can produce conidia in shorter periods, and T. asperellum mycelia were less sensitive to high temperature than P. ostreatus. Deactivated P. ostreatus mycelia can induce T. asperellum cell wall-degrading enzymes (CWDEs) and P. ostreatus mycelia subjected to high temperature showed induced CWDEs more effective than those incubated at 28°C. Moreover, T. asperellum showed higher CWDEs activity at high temperature. In dual cultures, hydrogen peroxide (H2O2) increased after 36°C, and high concentration of H2O2 could significantly inhibit the growth of P. ostreatus mycelia. In summary, our findings indicated for the first time that high temperature can induce a series of mechanisms to enhance infection abilities of T. asperellum to P. ostreatus mycelia and to cause Pleurotus green mold disease.


Journal of Basic Microbiology | 2017

Gene cloning, expression, and characterization of trehalose‐6‐phosphate synthase from Pleurotus ostreatus

Min Lei; Xiangli Wu; Jinxia Zhang; Hexiang Wang; Chenyang Huang

Trehalose‐6‐phosphate synthase (TPS; EC2.4.1.15) catalyzes the first step in trehalose synthesis, which involves transfer of glucose from uridine diphosphate glucose (UDPG) to glucose 6‐phosphate (G6P) to form trehalose‐6‐phosphate. To determine the gene and enzymatic characteristics of TPS in Pleurotus ostreatus, we cloned and sequenced the cDNA of PoTPS1, which contains a 1665 bp open reading frame that encodes a 554‐amino acid protein with a predicted molecular weight of 62.01 kDa. This gene was expressed in Escherichia coli BL21 and then the recombinant protein was purified and characterized. Results showed that the optimum pH and temperature for the recombinant PoTPS1 were 7.4 and 30 °C, respectively; the Km value against G6P and UDPG were 0.14 and 0.17 mM, respectively, and the Vmax and Kcat values were 91.86 nkat/g and 5.89 s−1, respectively. Trehalose content was as high as 158.88 mg g−1 dry weight after heat treatment at 40 °C for 15 h, which was consistent with highest TPS1 activity at that time point. This result indicated that PoTPS1 was responsible for trehalose synthesis in P. ostreatus.


Genes | 2017

Differential Expression Patterns of Pleurotus ostreatus Catalase Genes during Developmental Stages and under Heat Stress

Lining Wang; Xiangli Wu; Wei Gao; Mengran Zhao; Jinxia Zhang; Chenyang Huang

Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes. They participate in fungal growth and development, such as mycelial growth and cellular differentiation, and in protecting fungi from oxidative damage under stressful conditions. To investigate the potential functions of catalases in Pleurotus ostreatus, we obtained two catalase genes from a draft genome sequence of P. ostreatus, and cloned and characterized them (Po-cat1 and Po-cat2). Po-cat1 (group II) and Po-cat2 (group III) encoded putative peptides of 745 and 528 amino acids, respectively. Furthermore, the gene structures were variant between Po-cat1 and Po-cat2. Further research revealed that these two catalase genes have divergent expression patterns during different developmental stages. Po-cat1/Po-cat1 was at a barely detectable level in mycelia, accumulated gradually during reproductive growth, and was maximal in separated spores. But no catalase activity of Po-cat1 was detected by native-PAGE during any part of the developmental stages. In contrast, high Po-cat2/Po-cat2 expression and Po-cat2 activity found in mycelia were gradually lost during reproductive growth, and at a minimal level in separated spores. In addition, these two genes responded differentially under 32 °C and 40 °C heat stresses. Po-cat1 was up-regulated under both temperature conditions, while Po-cat2 was up-regulated at 32 °C but down-regulated at 40 °C. The accumulation of catalase proteins correlated with gene expression. These results indicate that the two divergent catalases in P. ostreatus may play different roles during development and under heat stress.


PeerJ | 2018

Cloning, purification and characterization of trehalose-6-phosphate synthase from Pleurotus tuoliensis

Xiangli Wu; Zhihao Hou; Chenyang Huang; Qiang Chen; Wei Gao; Jinxia Zhang

Pleurotus tuoliensis, a kind of valuable and favorable edible mushroom in China, is always subjected to high environmental temperature during cultivation. In our previous study with P. tuoliensis, trehalose proved to be effective for tolerating heat stress. Trehalose-6-phosphate synthase (TPS; EC2.4.1.15) plays a key role in the biosynthesis of trehalose in fungi. In this study, a full-length of cDNA with 1,665 nucleotides encoding TPS (PtTPS) in P. tuoliensis was cloned. The PtTPS amino acid was aligned with other homologues and several highly conserved regions were analyzed. Thus, the TPS protein was expressed in Escherichia coli and purified by affinity chromatography to test its biochemical properties. The molecular mass of the enzyme is about 60 kDa and the optimum reaction temperature and pH is 30 °C and 7, respectively. The UDP-glucose and glucose-6-phosphate were the optimum substrates among all the tested glucosyl donors and acceptors. Metal cations like Mg2+, Co2+, Mn2+, Ni2+, K+, Ag+ stimulated PtTPS activity significantly. Metal chelators such as sodium citrate, citric acid, EDTA, EGTA and CDTA inhibited enzyme activity. Polyanions like heparin and chondroitin sulfate were shown to stimulate TPS activity.


International Journal of Molecular Sciences | 2018

Genome-Wide Characterization and Expression Analyses of Pleurotus ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de novo Sequenced Genome

Lining Wang; Wei Gao; Xiangli Wu; Mengran Zhao; Jibin Qu; Chenyang Huang; Jinxia Zhang

Pleurotus ostreatus is a commercially grown mushroom species in China. However, studies on the mechanisms of the fruiting body development and stress response of P. ostreatus are still at a primary stage. In this study, we report the entire genome sequence of P. ostreatus CCMSSC03989. Then, we performed comprehensive genome-wide characterization and expression analysis of the MYB transcription factor family during a series of developmental stages and under the condition of heat stress. A 34.76 Mb genome was obtained through next-generation sequencing (NGS) and Bionano optical mapping approaches. The genome has a scaffold N50 of 1.1 Mb and contains 10.11% repeats, and 10,936 gene models were predicted. A total of 20 MYB genes (PoMYB) were identified across the genome, and the full-length open reading frames were isolated. The PoMYBs were classified into 1 repeat (1R), 2R, and 3R-MYB groups according to their MYB domain repeat numbers, and 3R-MYBs possessed relatively more introns than 1R and 2R-MYBs. Based on phylogenetic analysis, the PoMYBs were divided into four groups and showed close relationships with the MYB genes of plants and fungi. RNA-sequencing (RNA-Seq) and quantitative PCR (qPCR) analyses revealed that PoMYB expression showed stage-specific patterns in reproductive stages and could be induced by heat stress. The P. ostreatus draft genome will promote genome-wide analysis, and our study of PoMYBs will promote further functional analysis of MYB genes in mushrooms.


Frontiers in Microbiology | 2018

High-Temperature Induced Changes of Extracellular Metabolites in Pleurotus ostreatus and Their Positive Effects on the Growth of Trichoderma asperellum

Zhiheng Qiu; Xiangli Wu; Jinxia Zhang; Chenyang Huang

Pleurotus ostreatus is a widely cultivated edible fungus in China. Green mold disease of P. ostreatus which can seriously affect yield is a common disease during cultivation. It occurs mostly after P. ostreatus mycelia have been subjected to high temperatures. However, little information is available on the relationship between high temperature and green mold disease. The aim of this study is to prove that extracellular metabolites of P. ostreatus affected by high temperature can promote the growth of Trichoderma asperellum. After P. ostreatus mycelia was subjected to high temperature, the extracellular fluid of P. ostreatus showed a higher promoting effect on mycelial growth and conidial germination of T. asperellum. The thiobarbituric acid reactive substance (TBARS) content reached the maximum after 48 h at 36°C. A comprehensive metabolite profiling strategy involving gas chromatography-mass spectrometry (GC/MS) combined with liquid chromatography-mass spectrometry (LC/MS) was used to analyze the changes of extracellular metabolites in response to high temperature. A total of 141 differential metabolites were identified, including 84.4% up-regulated and 15.6% down-regulated. Exogenous metabolites whose concentrations were increased after high temperature were randomly selected, and nearly all of them were able to promote the mycelial growth and conidial germination of T. asperellum. The combination of all selected exogenous metabolites also has the promotion effects on the mycelial growth and conidial germination of T. asperellum in a given concentration range in vitro. Overall, these results provide a first view that high temperature affects the extracellular metabolites of P. ostreatus, and the extensive change in metabolites promotes T. asperellum growth.


Current Microbiology | 2014

Heat Stress Induces Apoptotic-Like Cell Death in Two Pleurotus Species

Chi Song; Qiang Chen; Xiangli Wu; Jinxia Zhang; Chenyang Huang

Collaboration


Dive into the Xiangli Wu's collaboration.

Top Co-Authors

Avatar

Chenyang Huang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Gao

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hexiang Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Min Lei

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinxia Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge