Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiangli Yang is active.

Publication


Featured researches published by Xiangli Yang.


Nature | 2005

Leptin regulation of bone resorption by the sympathetic nervous system and CART

Florent Elefteriou; Jong Deok Ahn; Shu Takeda; Michael Starbuck; Xiangli Yang; Xiuyun Liu; Hisataka Kondo; William G. Richards; Tony W. Bannon; Masaki Noda; Karine Clément; Christian Vaisse; Gerard Karsenty

Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via β2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART (‘cocaine amphetamine regulated transcript’), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.


Cell | 2004

Histone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis

Rick B. Vega; Koichi Matsuda; Junyoung Oh; Ana C. Barbosa; Xiangli Yang; Eric Meadows; John McAnally; John M. Shelton; James A. Richardson; Gerard Karsenty; Eric N. Olson

Histone deacetylases (HDACs) modulate cell growth and differentiation by governing chromatin structure and repressing the activity of specific transcription factors. We showed previously that HDAC9 acts as a negative regulator of cardiomyocyte hypertrophy and skeletal muscle differentiation. Here we report that HDAC4, which is expressed in prehypertrophic chondrocytes, regulates chondrocyte hypertrophy and endochondral bone formation by interacting with and inhibiting the activity of Runx2, a transcription factor necessary for chondrocyte hypertrophy. HDAC4-null mice display premature ossification of developing bones due to ectopic and early onset chondrocyte hypertrophy, mimicking the phenotype that results from constitutive Runx2 expression in chondrocytes. Conversely, overexpression of HDAC4 in proliferating chondrocytes in vivo inhibits chondrocyte hypertrophy and differentiation, mimicking a Runx2 loss-of-function phenotype. These results establish HDAC4 as a central regulator of chondrocyte hypertrophy and skeletogenesis and suggest general roles for class II HDACs in the control of cellular hypertrophy.


Cell | 2004

ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology:Implication for Coffin-Lowry Syndrome

Xiangli Yang; Koichi Matsuda; Peter Bialek; Sylvie Jacquot; Howard C Masuoka; Thorsten Schinke; Lingzhen Li; Stefano Brancorsini; Paolo Sassone-Corsi; Tim M. Townes; André Hanauer; Gerard Karsenty

Coffin-Lowry Syndrome (CLS) is an X-linked mental retardation condition associated with skeletal abnormalities. The gene mutated in CLS, RSK2, encodes a growth factor-regulated kinase. However, the cellular and molecular bases of the skeletal abnormalities associated with CLS remain unknown. Here, we show that RSK2 is required for osteoblast differentiation and function. We identify the transcription factor ATF4 as a critical substrate of RSK2 that is required for the timely onset of osteoblast differentiation, for terminal differentiation of osteoblasts, and for osteoblast-specific gene expression. Additionally, RSK2 and ATF4 posttranscriptionally regulate the synthesis of Type I collagen, the main constituent of the bone matrix. Accordingly, Atf4-deficiency results in delayed bone formation during embryonic development and low bone mass throughout postnatal life. These findings identify ATF4 as a critical regulator of osteoblast differentiation and function, and indicate that lack of ATF4 phosphorylation by RSK2 may contribute to the skeletal phenotype of CLS.


Molecular and Cellular Biology | 2003

Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ.

Cai Bin Cui; Lyndon F. Cooper; Xiangli Yang; Gerard Karsenty; Ikramuddin Aukhil

ABSTRACT Core-binding factor 1 (Cbfa1; also called Runx2) is a transcription factor belonging to the Runt family of transcription factors that binds to an osteoblast-specific cis-acting element (OSE2) activating the expression of osteocalcin, an osteoblast-specific gene. Using the yeast two-hybrid system, we identified a transcriptional coactivator, TAZ (transcriptional coactivator with PDZ-binding motif), that binds to Cbfa1. A functional relationship between Cbfa1 and TAZ is demonstrated by the coimmunoprecipitation of TAZ by Cbfa1 and by the fact that TAZ induces a dose-dependent increase in the activity of osteocalcin promoter-luciferase constructs by Cbfa1. A dominant-negative construct of TAZ in which the coactivation domains have been deleted reduces osteocalcin gene expression down to basal levels. NIH 3T3, MC 3T3, and ROS 17/2.8 cells showed the expected nuclear localization of Cbfa1, whereas TAZ was distributed throughout the cytoplasm with some nuclear localization when transfected with either Cbfa1 or TAZ. Upon cotransfection by both Cbfa1 and TAZ, the transfected TAZ shows predominant nuclear localization. The dominant-negative construct of TAZ shows minimal nuclear localization upon cotransfection with Cbfa1. These data indicate that TAZ is a transcription coactivator for Cbfa1 and may be involved in the regulation of osteoblast differentiation.


Trends in Molecular Medicine | 2002

Transcription factors in bone: developmental and pathological aspects

Xiangli Yang; Gerard Karsenty

The skeleton in vertebrates is composed of bone and cartilage, which contains three specific types: osteoblasts and osteoclasts in bone and chondrocytes in cartilage. Like other cell types in the body, skeletal cell differentiation is controlled by multiple transcription factors at various stages of their development. Cbfa1 and Osx, a newly identified zinc-finger containing protein, are osteoblast-specific transcription factors. Loss of function of either one of them leads to absence of bone in mammals. Here, we discuss transcription factors involved in controlling the differentiation of osteoclasts, such as Pu.1 and nuclear factor (NF)-kappaB, and chondrocytes, such as Sox proteins. Finally, recent progress in identifying mutations in transcription factors affecting skeletal patterning and development is also described.


PLOS Biology | 2012

Stimulation of Host Bone Marrow Stromal Cells by Sympathetic Nerves Promotes Breast Cancer Bone Metastasis in Mice

J. Preston Campbell; Matthew R. Karolak; Yun-Yun Ma; Daniel S. Perrien; S. Kathryn Masood-Campbell; Niki Penner; Steve Muñoz; Andries Zijlstra; Xiangli Yang; Julie A. Sterling; Florent Elefteriou

The activation of sympathetic nerves by psychosocial stress creates a favorable environment in bone for the establishment of cancer cells in a mouse model of breast cancer.


Development | 2009

Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription

Weiguang Wang; Na Lian; Lingzhen Li; Heather E. Moss; Weixi Wang; Daniel S. Perrien; Florent Elefteriou; Xiangli Yang

Activating transcription factor 4 (Atf4) is a leucine-zipper-containing protein of the cAMP response element-binding protein (CREB) family. Ablation of Atf4 (Atf4−/−) in mice leads to severe skeletal defects, including delayed ossification and low bone mass, short stature and short limbs. Atf4 is expressed in proliferative and prehypertrophic growth plate chondrocytes, suggesting an autonomous function of Atf4 in chondrocytes during endochondral ossification. In Atf4−/− growth plate, the typical columnar structure of proliferative chondrocytes is disturbed. The proliferative zone is shortened, whereas the hypertrophic zone is transiently expanded. The expression of Indian hedgehog (Ihh) is markedly decreased, whereas the expression of other chondrocyte marker genes, such as type II collagen (Col2a1), PTH/PTHrP receptor (Pth1r) and type X collagen (Col10a1), is normal. Furthermore, forced expression of Atf4 in chondrocytes induces endogenous Ihh mRNA, and Atf4 directly binds to the Ihh promoter and activates its transcription. Supporting these findings, reactivation of Hh signaling pharmacologically in mouse limb explants corrects the Atf4−/− chondrocyte proliferation and short limb phenotypes. This study thus identifies Atf4 as a novel transcriptional activator of Ihh in chondrocytes that paces longitudinal bone growth by controlling growth plate chondrocyte proliferation and differentiation.


Human Molecular Genetics | 2011

Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I

Weixi Wang; Jeffrey S. Nyman; Koichiro Ono; David A. Stevenson; Xiangli Yang; Florent Elefteriou

Mutations in NF1 cause neurofibromatosis type I (NF1), a disorder characterized, among other clinical manifestations, by generalized and focal bony lesions. Dystrophic scoliosis and tibial pseudoarthrosis are the most severe skeletal manifestations for which treatment is not satisfactory, emphasizing the dearth of knowledge related to the biology of NF1 in bone cells. Using reporter mice, we report here that the mouse Col2α1-Cre promoter (collagen, type II, alpha 1) is active not only in chondrocytes but also in adult bone marrow osteoprogenitors giving rise to osteoblasts. Based on this finding, we crossed the Col2α1-Cre transgenic and Nf1(flox/flox) mice to determine whether loss of Nf1 in axial and appendicular osteochondroprogenitors recapitulates the skeletal abnormalities of NF1 patients. By microtomographic and X-rays studies, we show that Nf1(Col2)(-/-) mice display progressive scoliosis and kyphosis, tibial bowing and abnormalities in skull and anterior chest wall formation. These defects were accompanied by a low bone mass phenotype, high bone cortical porosity, osteoidosis, increased osteoclastogenesis and decreased osteoblast number, as quantified by histomorphometry and 3D-microtomography. Loss of Nf1 in osteochondroprogenitors also caused severe short stature and intervertebral disc defects. Blockade of the RAS/ERK activation characteristic of Nf1(-/-) osteoprogenitors by lovastatin during embryonic development could attenuate the increased cortical porosity observed in mutant pups. These data and the skeletal similarities between this mouse model and NF1 patients thus suggest that activation of the RAS/ERK pathway by Nf1 loss-of-function in osteochondroprogenitors is responsible for the vertebral and tibia lesions in NF1 patients, and that this molecular signature may represent a good therapeutic target.


PLOS ONE | 2012

Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells.

Junling Zhuang; Jianghong Zhang; Seint T. Lwin; James R. Edwards; Claire M. Edwards; Gregory R. Mundy; Xiangli Yang

Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs) are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA), a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.


Bone | 2011

Genetic mouse models for bone studies—Strengths and limitations

Florent Elefteriou; Xiangli Yang

Mice have become a preferred model system for bone research because of their genetic and pathophysiological similarities to humans: a relatively short reproductive period, leading to relatively low cost of maintenance and the availability of the entire mouse genome sequence information. The success in producing the first transgenic mouse line that expressed rabbit β-globin protein in mouse erythrocytes three decades ago marked the beginning of the use of genetically engineered mice as model system to study human diseases. Soon afterward the development of cultured pluripotent embryonic stem cells provided the possibility of gene replacement or gene deletion in mice. These technologies have been critical to identify new genes involved in bone development, growth, remodeling, repair, and diseases, but like many other approaches, they have limitations. This review will introduce the approaches that allow the generation of transgenic mice and global or conditional (tissue-specific and inducible) mutant mice. A list of the various promoters used to achieve bone-specific gene deletion or overexpression is included. The limitations of these approaches are discussed, and general guidelines related to the analysis of genetic mouse models are provided.

Collaboration


Dive into the Xiangli Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffry S. Nyman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Perrien

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Na Lian

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixi Wang

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yun Ma

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge