Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianjun Yuan is active.

Publication


Featured researches published by Xianjun Yuan.


Animal Science Journal | 2015

Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats‐common vetch mixed silage on the Tibetan plateau

Jie Zhang; Gang Guo; Lei Chen; Junfeng Li; Xianjun Yuan; Chengqun Yu; Masataka Shimojo; Tao Shao

The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.


Journal of the Science of Food and Agriculture | 2016

Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat–common vetch intercrop on the Tibetan Plateau

Lei Chen; G. Guo; Xianjun Yuan; Jie Zhang; Junfeng Li; Tao Shao

BACKGROUND The objective of this study was to investigate the effect of molasses, lactic acid bacteria and propionic acid on the fermentation quality, aerobic stability and in vitro gas production of total mixed ration (TMR) silage prepared with oat-common vetch intercrop on the Tibetan plateau. TMR (436 g kg(-1) dry matter (DM)) was ensiled with six experimental treatments: (1) no additives (control); (2) molasses (M); (3) an inoculant (Lactobacillus plantarum) (L); (4) propionic acid (P); (5) molasses + propionic acid (MP); (6) inoculant + propionic acid (LP). RESULT All silages were well preserved with low pH (< 4.19) and NH3-N contents, and high lactic acid contents after ensiling for 45 days. L and PL silages underwent a more efficient fermentation than silages without L. P and MP silages inhibited lactic acid production. Under aerobic conditions, M and L silage reduced aerobic stability for 15 and 74 h, respectively. All silages that had propionic acid in their treatments markedly (P < 0.05) improved the aerobic stability. After 72 h incubation, all additives treatments increased (P < 0.05) the 72 h cumulative gas production and in vitro DM digestibility (IVDMD) as compared with the control. L treatment decreased (P < 0.05) in vitro neutral detergent fibre degradability. CONCLUSIONS Our findings show that TMR prepared with oat-common vetch intercrop can be well preserved. Although propionic acid is compatible with lactic acid bacteria, and when used together, they had minor effects on fermentation, aerobic stability and in vitro digestibility of TMR silage prepared with oat-common vetch intercrop.


Bioresource Technology | 2016

Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives

Seare T. Desta; Xianjun Yuan; Junfeng Li; Tao Shao

Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility (ED) of Napier grass silage was examined. Napier grass ensiled with no additive control, 0.2% formic acid, 0.4% molasses, and 0.3% fibrolytic enzyme for, 7, 30, 60 and 90days. Additives increased lactic acid, soluble carbohydrate and decreased all of lignocellulosic contents except acid detergent lignin and pH than control. The highest value of nonstructural carbohydrate and large reduction in lignocellulosic contents was observed in formic acid and fibrolytic enzyme silage respectively. The content of glucose and fructose showed rapid drop in the first 7days of ensilage. Ensilage decreased lignocellulosic contents and increased ED compared to fresh material. The ED of formic acid and molasses silage was significantly higher than control and fibrolytic enzyme silages in all tested days. In summery the ensiling quality structural and nonstructural carbohydrate and ED value of mature Napier grass silage improved through additives.


Animal Production Science | 2013

Effect of inclusion of grasses and wet hulless-barley distillers' grains on the fermentation and nutritive quality of oat straw- and straw-grass silages in Tibet

Xianjun Yuan; Chengqun Yu; ZhiHua Li; Masataka Shimojo; Tao Shao

In order to enlarge the feed resources in Tibet, oat straw was conserved as silage by combining with tall fescue and wet hulless-barley distillers’ grains (WHDG). In Experiment 1, oat straw was ensiled with four levels of tall fescue (0, 20, 40 or 60% of fresh weight) in laboratory silos for 30 days. Ensiling oat straw with tall fescue significantly increased (P 0.05) in pH value between 40 and 60% tall fescue inclusion silages. To maximise the use of straw, it was suggested that 40% tall fescue inclusion was proper for further study. In Experiment 2, mixture of tall fescue and oat straw (6/4) were ensiled with 0, 10, 20 or 30% WHDG, triplicate silos for each treatment were opened on 7, 14, 30 and 60 days after ensiling, respectively, the fermentation characteristics and in vitro rumen degradability were analysed. WHDG addition significantly improved the fermentation quality of mixed silages, indicated by significantly lower (P < 0.05) pH, ammonia/total N , butyric acid and propionic acid concentrations and significantly higher (P < 0.05) DM and lactic acid content than the control. WHDG addition silages also showed higher crude protein contents, and lower neutral detergent fibre and acid detergent fibre content. These results suggest that adding WHDG to mixture of oat straw and tall fescue before ensiling appears to be a feasible strategy to improve the fermentation and nutritive quality of straw-grass silage.


Journal of the Science of Food and Agriculture | 2017

Characteristics of lactic acid bacteria isolates and their effect on the fermentation quality of Napier grass silage at three high temperatures

Ali Gulfam; G. Guo; Seare Tajebe; Lei Chen; Qinhua Liu; Xianjun Yuan; Yunfeng Bai; Tao Saho

BACKGROUND The poor fermentation quality of silage is an important issue for silage production during the high temperatures of summer. Pediococcus acidilactici GG13 (GG13) and Lactobacillus rhamnosus GG26 (GG26) isolated from Italian ryegrass (Lolium multiflorum Lam.) silage were characterised by morphological and physiological tests and 16S rRNA sequencing analysis, and their effects, along with those of a commercial lactic acid bacteria (LAB) inoculant (CB), on the fermentation quality of facultative halophyte Napier grass (Pennisetum purpureum Schumach) ensiled at 30 °C, 40 °C and 50 °C were studied, respectively. RESULT The strains GG13 and GG26 grew well at 50 °C and pH 3.5, and were tolerant to 6.5% NaCl. After ensiling for 50 days, the strains GG13 and GG26 and the CB decreased (P < 0.001) the pH and acetic acid and ammonia-N contents and increased (P < 0.001) the lactic acid contents at 30 °C, and decreased (P < 0.001) the ammonia-N contents at 40 °C in Napier grass. CB did not affect the fermentation quality at 50 °C, whereas both isolated strains improved the fermentation quality of Napier grass silage as indicated by the lower (P < 0.001) pH, butyric acid and ammonia-N contents and higher (P < 0.001) lactic acid contents. The strain GG13 is better than GG26 with regard to improvement in fermentation quality of Napier grass silage. CONCLUSIONS The results of this study suggested that strain GG13 is a good LAB inoculant for producing well-fermented silages during the high temperatures of summer times.


Journal of the Science of Food and Agriculture | 2017

Effects of four short-chain fatty acids or salts on the dynamics of nitrogen transformations and intrinsic protease activity of alfalfa silage

Xianjun Yuan; AiYou Wen; Seare T. Desta; Zhihao Dong; Tao Shao

BACKGROUND Short-chain fatty salts have been widely used as food and forage preservatives because of their antimicrobial properties. This study evaluated the effects of four chemical compounds with antimicrobial properties on nitrogen transformations and intrinsic protease activity of alfalfa silage. RESULTS Potassium diformate (PD) and formic acid (FA) rapidly reduced silage pH. Silages treated with sodium diacetate (SD) and calcium propionate (CAP) had higher final peptide N concentrations than other silage. The free amino acid N contents in PD and FA treated silages were lower than other silages at all intervals of ensilage. The ammonia N concentrations in FA and PD silages were the lowest, followed by SD and CAP silages. As ensiling progressed, the aminopeptidase activity was completely lost by day 5 for FA and PD silages and inactive by day 7 for SD silage, while it remained active after day 7 for control and CAP silage. The carboxypeptidase activities in FA and PD silages were already reduced below 50% by day 1 of ensiling. CONCLUSION Potassium diformate was as effective as formic acid in depressing the proteolysis, while sodium diacetate and calcium propionate were inferior to formic acid in protecting alfalfa proteins from being hydrolysed.


PeerJ | 2016

Cloning, expression and characterization of a cold-adapted endo-1, 4-β-glucanase from Citrobacter farmeri A1, a symbiotic bacterium of Reticulitermes labralis

Xi Bai; Xianjun Yuan; Aiyou Wen; Junfeng Li; Yunfeng Bai; Tao Shao

Background Many biotechnological and industrial applications can benefit from cold-adapted EglCs through increased efficiency of catalytic processes at low temperature. In our previous study, Citrobacter farmeri A1 which was isolated from a wood-inhabiting termite Reticulitermes labralis could secrete a cold-adapted EglC. However, its EglC was difficult to purify for enzymatic properties detection because of its low activity (0.8 U/ml). The objective of the present study was to clone and express the C. farmeri EglC gene in Escherichia coli to improve production level and determine the enzymatic properties of the recombinant enzyme. Methods The EglC gene was cloned from C. farmeri A1 by thermal asymmetric interlaced PCR. EglC was transformed into vector pET22b and functionally expressed in E. coli. The recombination protein EglC22b was purified for properties detection. Results SDS-PAGE revealed that the molecular mass of the recombinant endoglucanase was approximately 42 kDa. The activity of the E. coli pET22b-EglC crude extract was 9.5 U/ml. Additionally, it was active at pH 6.5–8.0 with an optimum pH of 7.0. The recombinant enzyme had an optimal temperature of 30–40 °C and exhibited >50% relative activity even at 5 °C, whereas it lost approximately 90% of its activity after incubation at 60 °C for 30 min. Its activity was enhanced by Co2+ and Fe3+, but inhibited by Cd2+, Zn2+, Li+, Triton X-100, DMSO, acetonitrile, Tween 80, SDS, and EDTA. Conclusion These biochemical properties indicate that the recombinant enzyme is a cold-adapted endoglucanase that can be used for various industrial applications.


Bioresource Technology | 2018

Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese

Junfeng Li; Xianjun Yuan; Seare T. Desta; Zhihao Dong; Wazha Mugabe; Tao Shao

Two bacteria strains with cellulolytic potential isolated from Tibetan yak (Bos grunniens) rumen were identified as Enterococcus faecalis (JF85) and Enterococcus faecium (Y83). Isolates grow well within a range of temperature 15 to 55 °C and pH 3.0-7.0, respectively. Two strains were inoculated with or without Lactobacillus plantarum (Lp) to Pennisetum sinese silage for 90 days. All inoculants increased lactic acid content, decreased pH and lignocellulose contents compared with silage without additives (control). The lowest pH, highest lactic acid and largest reduction in lignocellulose contents were observed in JF85+Lp and Y83+Lp silages. Isolates alone or in combination with Lp significantly increased WSC, mono- and disaccharides contents as compared to the control. Combined addition efficiently improved enzymatic hydrolysis of Pennisetum sinese silage, indicated by higher glucose yield and cellulose convertibility. Pennisetum sinese ensiled with combined additives is a suitable storage and pretreatment method prior to sugars production from energy crop.


Asian-australasian Journal of Animal Sciences | 2016

Characteristics of isolated lactic acid bacteria and their effects on the silage quality

Siran Wang; Xianjun Yuan; Zhihao Dong; Junfeng Li; G. Guo; Yunfeng Bai; Junyu Zhang; Tao Shao

Objective Four lactic acid bacteria (LAB) strains isolated from common vetch, tall fescue and perennial ryegrass on the Tibetan Plateau were characterized, and their effects on the fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silage were studied. Methods The four isolated strains and one commercial inoculant (G, Lactobacillus plantarum MTD-1) were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. The five LAB strains were added to Italian ryegrass for ensiling at three different temperatures (10°C, 15°C, and 25°C). Results All isolated strains (LCG3, LTG7, I5, and LI3) could grow at 5°C to 20°C, pH 3.0 to 8.0 and NaCl (3.0%, 6.5%). Strains LCG3, LTG7, I5, and LI3 were identified as Lactobacillus plantarum, Pediococcus acidilactici, Lactobacillus paraplantarum, and Lactobacillus casei by sequencing 16S rDNA, respectively. All LAB inoculants significantly (p<0.05) increased lactic acid (LA) contents and ratios of lactic acid to acetic acid, and reduced pH and ammonia nitrogen/total nitrogen (AN/TN) compared with uninoculated silages at various temperatures (10°C, 15°C, and 25°C). Compared to the commercial inoculant G, I5, and LI3 showed similar effects on improving the silage quality of Italian ryegrass at 10°C and 15°C, indicated by similar pH, LA content and AN/TN. Conclusion All inoculants could improve the silage fermentation quality at various temperatures (10°C, 15°C, and 25°C). At the temperature of 10°C and 15°C, strain I5 and LI3 had similar effects with the commercial inoculant G on improving the silage quality of Italian ryegrass.


Asian-australasian Journal of Animal Sciences | 2016

Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage

Xianjun Yuan; AiYou Wen; Seare T. Desta; Jian Wang; Tao Shao

Objective The objective of this study was to evaluate the effect of sodium diacetate (SDA) on fermentation profile, chemical composition and aerobic stability of alfalfa (Medicago sativa L.) silage. Methods Fresh alfalfa was ensiled with various concentrations of SDA (0, 3, 5, 7, and 9 g/kg of fresh forage). After 60 days of the ensiling, the samples were collected to examine the fermentative quality, chemical composition and aerobic stability. Results The application of SDA significantly (p<0.05) decreased silage pH with the lowest value in silage with 7 g/kg of SDA. The proliferations of enterobacteria, yeasts, molds and clostridia were inhibited by SDA, resulted in lower ethanol, propionic and butyric acid concentrations and dry matter loss in SDA treated silages than control. The increasing SDA linearly decreased free amino acid N (p<0.001), ammonia N (p = 0.018) and non-protein N (p<0.001), while linearly increased water soluble carbohydrate (p<0.001) and peptide N (p<0.001). It is speculated that SDA accelerated the shift from homofermentative to heterofermentative lactic acid bacteria during the silage fermentation, indicated by lower lactic acid production in SDA-9 than SDA-7 silages after 60 days of ensiling. Alfalfa silages treated with SDA at 7 g/kg had highest Flieg’s point and remained stable more than 9 d during aerobic exposure under humid and hot conditions in southern China. Conclusion SDA may be used as an additive for alfalfa silages at a level of 7 g/kg.

Collaboration


Dive into the Xianjun Yuan's collaboration.

Top Co-Authors

Avatar

Tao Shao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhihao Dong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junfeng Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Seare T. Desta

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

AiYou Wen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lei Chen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Siran Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gang Guo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

G. Guo

Shanxi Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge