Xianwen Zhu
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xianwen Zhu.
Journal of Experimental Botany | 2013
Liang Xu; Yan Wang; Lulu Zhai; Yuanyuan Xu; Liangju Wang; Xianwen Zhu; Yiqin Gong; Rugang Yu; Cecilia Limera; Liwang Liu
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish.
Biochemical and Biophysical Research Communications | 2012
Yuanyuan Xu; Xianwen Zhu; Yiqin Gong; Liang Xu; Yan Wang; Liwang Liu
Real-time quantitative reverse transcription PCR (RT-qPCR) is a rapid and reliable method for gene expression studies. Normalization based on reference genes can increase the reliability of this technique; however, recent studies have shown that almost no single reference gene is universal for all possible experimental conditions. In this study, eight frequently used reference genes were investigated, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Actin2/7 (ACT), Tubulin alpha-5 (TUA), Tubulin beta-1 (TUB), 18S ribosomal RNA (18SrRNA), RNA polymerase-II transcription factor (RPII), Elongation factor 1-b (EF-1b) and Translation elongation factor 2 (TEF2). Expression stability of candidate reference genes was examined across 27 radish samples, representing a range of tissue types, cultivars, photoperiodic and vernalization treatments, and developmental stages. The eight genes in these sample pools displayed a wide range of Ct values and were variably expressed. Two statistical software packages, geNorm and NormFinder showed that TEF2, RPII and ACT appeared to be relatively stable and therefore the most suitable for use as reference genes. These results facilitate selection of desirable reference genes for accurate gene expression studies in radish.
BMC Genomics | 2015
Xiaochuan Sun; Liang Xu; Yan Wang; Rugang Yu; Xianwen Zhu; Xiaobo Luo; Yiqin Gong; Ronghua Wang; Cecilia Limera; Keyun Zhang; Liwang Liu
BackgroundSalt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown.ResultsSolexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR).ConclusionsWith the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops.
Plant Science | 2013
Liang Xu; Yan Wang; Yuanyuan Xu; Liangju Wang; Lulu Zhai; Xianwen Zhu; Yiqin Gong; Shan Ye; Liwang Liu
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that play significant regulatory roles in plant growth, development, and biotic and abiotic stress responses. To date, a great number of conserved and species-specific miRNAs have been identified in many important plant species such as Arabidopsis, rice and poplar. However, little is known about identification of miRNAs and their target genes in radish (Raphanus sativus L.). In the present study, a small RNA library from radish root was constructed and sequenced using the high-throughput Solexa sequencing. Through sequence alignment and secondary structure prediction, a total of 545 conserved miRNA families as well as 15 novel (with their miRNA* strand) and 64 potentially novel miRNAs were identified. Quantitative real-time PCR (qRT-PCR) analysis confirmed that both conserved and novel miRNAs were expressed in radish, and some of them were preferentially expressed in certain tissues. A total of 196 potential target genes were predicted for 42 novel radish miRNAs. Gene ontology (GO) analysis showed that most of the targets were involved in plant growth, development, metabolism and stress responses. This study represents a first large-scale identification and characterization of radish miRNAs and their potential target genes. These results could lead to the further identification of radish miRNAs and enhance our understanding of radish miRNA regulatory mechanisms in diverse biological and metabolic processes.
Plant Science | 2015
Liang Xu; Yan Wang; Wei Liu; Jin Wang; Xianwen Zhu; Keyun Zhang; Rugang Yu; Ronghua Wang; Yang Xie; Wei Zhang; Yiqin Gong; Liwang Liu
Cadmium (Cd) is a nonessential metallic trace element that poses potential chronic toxicity to living organisms. To date, little is known about the Cd-responsive regulatory network in root vegetable crops including radish. In this study, 31,015 unigenes representing 66,552 assembled unique transcripts were isolated from radish root under Cd stress based on de novo transcriptome assembly. In all, 1496 differentially expressed genes (DEGs) consisted of 3579 transcripts were identified from Cd-free (CK) and Cd-treated (Cd200) libraries. Gene Ontology and pathway enrichment analysis indicated that the up- and down-regulated DEGs were predominately involved in glucosinolate biosynthesis as well as cysteine and methionine-related pathways, respectively. RT-qPCR showed that the expression profiles of DEGs were in consistent with results from RNA-Seq analysis. Several candidate genes encoding phytochelatin synthase (PCS), metallothioneins (MTs), glutathione (GSH), zinc iron permease (ZIPs) and ABC transporter were responsible for Cd uptake, accumulation, translocation and detoxification in radish. The schematic model of DEGs and microRNAs-involved in Cd-responsive regulatory network was proposed. This study represents a first comprehensive transcriptome-based characterization of Cd-responsive DEGs in radish. These results could provide fundamental insight into complex Cd-responsive regulatory networks and facilitate further genetic manipulation of Cd accumulation in root vegetable crops.
Agricultural Sciences in China | 2008
Zhao-liang Lu; Liwang Liu; Xiao-yan Li; Yiqin Gong; Xilin Hou; Xianwen Zhu; Jinlan Yang; Longzhi Wang
Radish (Raphanus sativus L.) is an important vegetable crop worldwide. High nutritional quality was critical in its genetic improvement and production. The nutritional quality of 42 Chinese radish cultivars was analyzed in this study. The contents of six nutritional facts, dry matter (DM), crude fiber (CF), total soluble sugar (TSS), vitamin C (VC), protein, and nitrate, ranged from 29.7 to 88.2, 4.507 to 18.546, 2.233 to 15.457, 0.1416 to 0.3341, 0.34 to 1.15, and 1.81 to 5.89 g•kg^(-1) fresh weight (FW), respectively. Significant differences among the 42 radish cultivars were detected in the contents of nutritional facts. The data were subjected to cross-correlation analysis and principal component analysis (PCA). It was found that DM content was positively correlated with the content of TSS (r=0.7104), V(subscript c) (r=0.4011) and protein (r=0.4120). Vitamin C (V(subscript c)) content of radish showed a positive correlation (r=0.3300) with the protein content. According to the principal component analysis, out of the 42 radish cultivars, Nau-17, Nau-28, Nau-6, Nau-11, Nau-10, Nau-27, and Nau-31 were detected with very high scores in comprehensive evaluation. It could be concluded that abundant diversity of nutritional fact content occurred in different radish genotypes, and PCA analysis was effective for selecting radish germplasm with high quality. The results could contribute useful knowledge of nutritional quality, and provide important germplasms for the elite cultivar development and the inheritance study of nutritional facts in radish.
Scientific Reports | 2016
Yan Wang; Liang Xu; Hong Shen; Juanjuan Wang; Wei Liu; Xianwen Zhu; Ronghua Wang; Xiaochuan Sun; Liwang Liu
The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation.
Frontiers in Plant Science | 2015
Yang Xie; Shan Ye; Yan Wang; Liang Xu; Xianwen Zhu; Jinlan Yang; Haiyang Feng; Rugang Yu; Benard K. Karanja; Yiqin Gong; Liwang Liu
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop with high nutrient values and is adversely affected by non-essential heavy metals including chromium (Cr). Little is known about the molecular mechanism underlying Cr stress response in radish. In this study, RNA-Seq technique was employed to identify differentially expressed genes (DEGs) under Cr stress. Based on de novo transcriptome assembly, there were 30,676 unigenes representing 60,881 transcripts isolated from radish root under Cr stress. Differential gene analysis revealed that 2985 uingenes were significantly differentially expressed between Cr-free (CK) and Cr-treated (Cr600) libraries, among which 1424 were up-regulated and 1561 down-regulated. Gene ontology (GO) analysis revealed that these DEGs were mainly involved in primary metabolic process, response to abiotic stimulus, cellular metabolic process and small molecule metabolic process. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the DEGs were mainly involved in protein processing in endoplasmic reticulum, starch and sucrose metabolism, amino acid metabolism, glutathione metabolism, drug and xenobiotics by cytochrome P450 metabolism. RT-qPCR analysis showed that the expression patterns of 12 randomly selected DEGs were highly accordant with the results from RNA-seq. Furthermore, many candidate genes including signaling protein kinases, transcription factors and metal transporters, chelate compound biosynthesis and antioxidant system, were involved in defense and detoxification mechanisms of Cr stress response regulatory networks. These results would provide novel insight into molecular mechanism underlying plant responsiveness to Cr stress and facilitate further genetic manipulation on Cr uptake and accumulation in radish.
Plant Molecular Biology Reporter | 2015
Ronghua Wang; Liang Xu; Xianwen Zhu; Lulu Zhai; Yan Wang; Rugang Yu; Yiqin Gong; Cecilia Limera; Liwang Liu
AbstractmicroRNAs (miRNAs) are a class of single-stranded endogenous non-coding RNAs that play critical roles in plant growth, development, and environmental stress responses. Temperature is one of the major physical parameters disturbing cellular homeostasis and causing leaf etiolation in plants. Previous studies have reported that several conserved and novel miRNAs were responsive to heat stress in plants. However, the characterization of miRNAs responsive to heat stress in radish remains poorly understood. To better understand miRNAs and their target genes under heat stress, two small RNA libraries were constructed from heat-treated (Heat24) and heat-untreated (CK) radish roots. Using Solexa system, totally, 26 known and 19 novel miRNAs were identified as differentially expressed under heat stress. Expression patterns of a set of heat-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). Furthermore, 422 sliced targets for 25 known miRNAs were identified by degradome sequencing technology, and most of the identified targets are involved in multiple biological processes including transcriptional regulation and response to biotic and abiotic stresses. Moreover, some miRNAs and their corresponding targets, which are related to the accumulation of heat stress transcription factors and heat shock proteins, played important roles in thermo-tolerance in radish. These findings could enhance the understanding of molecular mechanisms underlying miRNAs and their targets in regulating plant responses to heat stress.
Scientific Reports | 2016
Lulu Zhai; Liang Xu; Yan Wang; Xianwen Zhu; Haiyang Feng; Chao Li; Xiaobo Luo; Muleke M. Everlyne; Liwang Liu
Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.