Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Qian Li is active.

Publication


Featured researches published by Xiao-Qian Li.


Molecular Brain | 2014

Sevoflurane preconditioning ameliorates neuronal deficits by inhibiting microglial MMP-9 expression after spinal cord ischemia/reperfusion in rats

Xiao-Qian Li; Xuezhao Cao; Jun Wang; Bo Fang; Wen-Fei Tan; Hong Ma

BackgroundMicroglia are the primary immune cells of the spinal cord that are activated in response to ischemia/reperfusion (IR) injury and release various neurotrophic and/or neurotoxic factors to determine neuronal survival. Among them, matrix metalloproteinase-9 (MMP-9), which cleaves various components of the extracellular matrix in the basal lamina and functions as part of the blood spinal cord barrier (BSCB), is considered important for regulating inflammatory responses and microenvironmental homeostasis of the BSCB in the pathology of ischemia. Sevoflurane has been reported to protect against neuronal apoptosis during cerebral IR. However, the effects of sevoflurane preconditioning on spinal cord IR injury remain unclear. In this study, we investigated the role of sevoflurane on potential genetic roles of microglial MMP-9 in tight junction protein breakdown, opening of the BSCB, and subsequent recruitment of microglia to apoptotic spinal cord neurons.ResultsThe results showed significant upregulation of MMP-9 in rats with IR-induced inflammation of the BSCB compared to that of the sham group, manifested as dysfunctional BSCB with increased Evans blue extravasation and reduced expression of occludin protein. Increased MMP-9 expression was also observed to facilitate invasion and migration of activated microglia, imaging as high Iba-1 expression, clustered to neurons in the injured spinal cord, as shown by double immunofluorescence, and increased proinflammatory chemokine production (CXCL10, CCL2). Further, sevoflurane preconditioning markedly improved motor function by ameliorating neuronal apoptosis, as shown by reduced TUNEL-positive cell counts and expression of cleaved caspase-3. These protective effects were probably responsible for downregulation of MMP-9 and maintenance of normal expression of occludin protein indicating BSCB integrity from inflammatory damage, which was confirmed by decreased protein levels of Iba-1 and MMP-9, as well as reduced production of proinflammatory chemokines (CXCL10, CCL2) and proinflammatory cytokines (IL-1β). Intrathecal injection of specific siRNAs targeting MMP-9 had similar protective effects to those of sevoflurane preconditioning.ConclusionsPreconditioning with 2.4% sevoflurane attenuated spinal cord IR injury by inhibiting recruitment of microglia and secretion of MMP-9; thus inhibiting downstream effects on inflammatory damage to BSCB integrity and neuronal apoptosis.


Journal of Neuroinflammation | 2014

Role of the TLR4 pathway in blood-spinal cord barrier dysfunction during the bimodal stage after ischemia/reperfusion injury in rats

Xiao-Qian Li; Huangwei Lv; Wen-Fei Tan; Bo Fang; He Wang; Hong Ma

BackgroundSpinal cord ischemia-reperfusion (I/R) involves two-phase injury, including an initial acute ischemic insult and subsequent inflammatory reperfusion injury, resulting in blood-spinal cord barrier (BSCB) dysfunction involving the TLR4 pathway. However, the correlation between TLR4/MyD88-dependent and TLR4/TRIF-dependent pathways in BSCB dysfunction is not fully understood. The aim of this study is to characterize inflammatory responses in spinal cord I/R and the events that define its clinical progression with delayed neurological deficits, supporting a bimodal mechanism of injury.MethodsRats were intrathecally pretreated with TAK-242, MyD88 inhibitory peptide, or Resveratrol at a 12 h interval for 3 days before undergoing 14-minute occlusion of aortic arch. Evan’s Blue (EB) extravasation and water content were detected at 6, 12, 18, 24, 36, 48, and 72 h after reperfusion. EB extravasation, water content, and NF-κB activation were increased with time after reperfusion, suggesting a bimodal distribution, as maximal increasing were detected at both 12 and 48 h after reperfusion. The changes were directly proportional to TLR4 levels determined by Western blot. Double-labeled immunohistochemical analysis was also used to detect the relationship between different cell types of BSCB with TLR4. Furthermore, NF-κB and IL-1β were analyzed at 12 and 48 h to identify the correlation between MyD88-dependent and TRIF-dependent pathways.ResultsRats without functional TLR4 and MyD88 attenuated BSCB leakage and inflammatory responses at 12 h, suggesting the ischemic event was largely mediated by MyD88-dependent pathway. Similar protective effects observed in rats with depleted TLR4, MyD88, and TRIF receptor at 48 h infer that the ongoing inflammation which occurred in late phase was mainly initiated by TRIF-dependent pathway and such inflammatory response could be further amplified by MyD88-dependent pathway. Additionally, microglia appeared to play a major role in early phase of inflammation after I/R injury, while in late responding phase both microglia and astrocytes were necessary.ConclusionsThese findings indicate the relevance of TLR4/MyD88-dependent and TLR4/TRIF-dependent pathways in bimodal phases of inflammatory responses after I/R injury, corresponding with the clinical progression of injury and delayed onset of symptoms. The clinical usage of TLR4 signaling inhibitors at different phases may be a therapeutic option for the prevention of delayed injury.


Journal of Vascular Surgery | 2013

Intrathecal transplantation of bone marrow stromal cells attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury in rabbits

Bo Fang; He Wang; Xuejun Sun; Xiao-Qian Li; Chun-Yu Ai; Wen-Fei Tan; Paul F. White; Hong Ma

OBJECTIVE Intrathecal administration of bone marrow stromal cells has been found to produce beneficial effects on ischemia-reperfusion injury to the spinal cord. The blood-spinal cord barrier is critical to maintain spinal cord homeostasis and neurologic function. However, the effects of bone marrow stromal cells on the blood-spinal cord barrier after spinal cord ischemia-reperfusion injury are not well understood. This study investigated the effects and possible mechanisms of bone marrow stromal cells on blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury. METHODS This was a prospective animal study conducted at the Central Laboratory of the First Affiliated Hospital, China Medical University. The study used 81 Japanese white rabbits (weight, 1.8-2.6 kg). Spinal cord ischemia-reperfusion injury was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Two days before the injury was induced, bone marrow stromal cells (1 × 10(8) in 0.2-mL phosphate-buffered saline) were transplanted by intrathecal injection. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histologic examination. The permeability of the blood-spinal cord barrier was examined using Evans blue (EB) and lanthanum nitrate as vascular tracers. The expression and localization of tight junction protein occludin were assessed by Western blot, real-time polymerase chain reaction, and immunofluorescence analysis. Matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor-α (TNF-α) expression were also measured. RESULTS Intrathecal transplantation of bone marrow stromal cells minimized the neuromotor dysfunction and histopathologic deficits (P < .01) and attenuated EB extravasation at 4 hours (5.41 ± 0.40 vs 7.94 ± 0.36 μg/g; P < .01) and 24 hours (9.03 ± 0.44 vs 15.77 ± 0.89 μg/g; P < .01) after spinal cord ischemia-reperfusion injury. In addition, bone marrow stromal cells treatment suppressed spinal cord ischemia-reperfusion injury-induced decreases in occludin (P < .01). Finally, bone marrow stromal cells reduced the excessive expression of MMP-9 and TNF-α (P < .01). CONCLUSIONS Pre-emptive intrathecal transplantation of bone marrow stromal cells stabilized the blood-spinal cord barrier integrity after spinal cord ischemia-reperfusion injury in a rabbit model of transient aortic occlusion. This beneficial effect was partly mediated by inhibition of MMP-9 and TNF-α and represents a potential therapeutic approach to mitigating spinal cord injury after aortic occlusion. CLINICAL RELEVANCE Clinical thoracoabdominal aorta surgery may trigger spinal cord ischemia-reperfusion injury, resulting in paraplegia as well as bladder, bowel, and sexual dysfunction. Transplantation of bone marrow stromal cells has attracted increasing attention in the field of nervous system protection, but its mechanisms have not been elucidated completely. The blood-spinal cord barrier plays a crucial role to maintain normal spinal cord function. This study suggested that intrathecal transplantation of bone marrow stromal cells stabilized blood-spinal cord barrier integrity through inhibiting the upregulation of matrix metalloproteinase-9 and tumor necrosis factor-a and ameliorated spinal cord ischemia-reperfusion injury. This may provide a novel train of thought to enhance the protective effects of bone marrow stromal cells on spinal cord injury.


Neuroscience | 2015

Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats

Yan Wang; Yuchao Ma; Jian Hu; Wenwen Cheng; Han Jiang; Xintong Zhang; Jun Ren; Xiao-Qian Li

Chronic stress during critical periods of human fetal brain development is associated with cognitive, behavioral, and mood disorders in later life. Altered glutamate receptor (GluR) expression has been implicated in the pathogenesis of stress-dependent disorders. To test whether prenatal chronic mild stress (PCMS) enhances offsprings vulnerability to stress-induced behavioral and neurobiological abnormalities and if this enhanced vulnerability is sex-dependent, we measured depression-like behavior in the forced swimming test (FST) and regional changes in GluR subunit expression in PCMS-exposed adult male and female rats. Both male and female PCMS-exposed rats exhibited stronger depression-like behavior than controls. Males and females exhibited unique regional changes in GluR expression in response to PCMS alone, FST alone (CON-FST), and PCMS with FST (PCMS-FST). In females, PCMS alone did not alter N-methyl-d-aspartate receptor (NMDAR) or metabotropic glutamate receptor (mGluR) expression, while in PCMS males, higher mGluR2/3, mGluR5, and NR1 expression levels were observed in the prefrontal cortex. In addition, PCMS altered the change in GluR expression induced by acute stress (the FST test), and this too was sex-specific. Male PCMS-FST rats expressed significantly lower mGluR5 levels in the hippocampus, lower mGluR5, NR1, postsynaptic density protein (PSD)95, and higher mGluR2/3 in the prefrontal cortex, and higher mGluR5 and PSD95 in the amygdala than male CON-FST rats. Female PCMS-FST rats expressed lower NR1 in the hippocampus, lower NR2B and PSD95 in the prefrontal cortex, lower mGluR2/3 in the amygdala, and higher PSD95 in the amygdala than female CON-FST rats. PCMS may increase the offsprings vulnerability to depression by altering sex-specific stress-induced changes in glutamatergic signaling.


Cellular Physiology and Biochemistry | 2015

Dexmedetomidine Attenuates Blood-Spinal Cord Barrier Disruption Induced by Spinal Cord Ischemia Reperfusion Injury in Rats

Bo Fang; Xiao-Qian Li; Bo Bi; Wen-Fei Tan; Gang Liu; Ying Zhang; Hong Ma

Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R) injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB) disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB) as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9), Angiopoietin-1 (Ang1) and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.


Neuroscience | 2016

Role of autophagy in the bimodal stage after spinal cord ischemia reperfusion injury in rats

Bo Fang; Xiao-Qian Li; Na-Ren Bao; Wen-Fei Tan; Feng-Shou Chen; Xiao-Li Pi; Ying Zhang; Hong Ma

Autophagy plays an important role in spinal cord ischemia reperfusion (I/R) injury, but its neuroprotective or neurodegenerative role remains controversial. The extent and persistence of autophagy activation may be the critical factor to explain the opposing effects. In this study, the different roles and action mechanisms of autophagy in the early and later stages after I/R injury were investigated in rats. Thespinal cord I/R injury was induced by 14-min occlusion of the aortic arch, after which rats were treated with autophagic inhibitor (3-methyladenine, 3-MA) or agonist (rapamycin) immediately or 48h following the injury. Autophagy markers, microtubule-associated protein light chain 3-II (LC3-II) and Beclin 1 increased and peaked at the early stage (8h) and the later stage (72h) after spinal cord I/R injury. Beclin 1 was mostly expressed in neurons, but was also expressed to an extent in astrocytes, microglia and vascular endothelial cells. 8h after injury, rats treated with 3-MA showed a decrease in the hind-limb Basso-Beattie-Bresnahan (BBB) motor function scores, surviving motor neurons, and B-cell lymphoma-2 (Bcl-2) expression, and increase in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells, Bcl-2-associated X protein (Bax), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) expression, and activation of microglia, while those treated with rapamycin showed opposing effects. However, 72h after injury, rats treated with 3-MA improved the BBB scores, and the surviving motor neurons, and reduced the autophagic cell death, while those treated with rapamycin had adverse effects. These findings provide the first evidence that early activated autophagy alleviates spinal cord I/R injury via inhibiting apoptosis and inflammation; however later excessively elevated autophagy aggravates I/R injury through inducing autophagic cell death.


PLOS ONE | 2016

Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord.

Xiao-Qian Li; Zai-Li Zhang; Wen-Fei Tan; Xi-Jia Sun; Hong Ma

Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that intrathecal blockade of CXCL12/CXCR4 expression may attenuate IR-induced pain sensation and the release of inflammatory cytokines by limiting glial TLR4 activation in spinal cord.


Clinical and Experimental Pharmacology and Physiology | 2016

Changes in postoperative night bispectral index of patients undergoing thoracic surgery with different types of anaesthesia management: a randomized controlled trial.

Wen-Fei Tan; Bing Guo; Hong Ma; Xiao-Qian Li; Bo Fang; Huangwei Lv

This study hypothesized that different types of anaesthesia management would result in similar postoperative sleep quality. In this prospective single‐blind investigation, 219 patients undergoing elective thoracic surgery were randomized into three arms: general anaesthesia, as the control group (group C); general anaesthesia combined with thoracic epidural anaesthesia (TEA) (group E); and general anaesthesia combined with infusion of 1 μg/kg dexmedetomidine (group D). Plasma samples were obtained to measure the amine and inflammatory cytokine concentrations. All patients underwent assessment with the bispectral index (BIS) for sleep quality and the visual analogue scale (VAS) for pain. The primary outcomes were inflammatory cytokine [interleukin‐6 (IL‐6) and tumor necrosis factor alpha (TNF‐α)] secretion and postoperative sleep quality on the first and second postoperative nights. The secondary outcomes were amine (adrenaline and noradrenaline) secretion during the surgical period and haemodynamic stability. The postoperative BIS area under the curve was significantly lower in group E (75.7%) than in group C (87.3%) or group D (86.5%). Patients in group E had the highest BIS of sleep efficiency index (29.2%, P < 0.05) and the lowest VAS scores (3.5, P < 0.05). Group E had lower IL‐6 levels than the other two groups 24 h after surgery (P < 0.05). Patients given TEA may show reduced sleep disturbances on the first night after surgery, perhaps due to better pain management and inhibition of IL‐6 release.


Neuroscience Letters | 2017

Electroacupuncture preconditioning and postconditioning inhibit apoptosis and neuroinflammation induced by spinal cord ischemia reperfusion injury through enhancing autophagy in rats

Bo Fang; Meiman Qin; Yun Li; Xiao-Qian Li; Wen-Fei Tan; Ying Zhang; Hong Ma

Electroacupuncture (EA) has beneficial effects on spinal cord ischemia reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. This study aimed to investigate the role of autophagy in the protection of EA preconditioning and postconditioning against spinal cord I/R injury. For this, spinal cord I/R injury was induced by 14min occlusion of the aortic arch, and rats were treated with EA for 20min before or after the surgery. The expression of autophagy components, light chain 3 and Beclin 1, was assessed by Western blot. The hind-limb motor function was assessed using the Basso-Beattie-Bresnahan (BBB) criteria, and motor neurons in the ventral gray matter were counted by histological examination. The apoptosis of neurocyte was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and matrix metalloproteinase-9 (MMP-9) was also measured using Western blot or enzyme-linked immunosorbent assay (ELISA). Either EA preconditioning or postconditioning enhanced autophagy, and minimized the neuromotor dysfunction and histopathological deficits after spinal cord I/R injury. In addition, EA suppressed I/R-induced apoptosis and increased in the expression of TNF-α, IL-1β, and MMP-9. In contrast, the autophagic inhibitor (3-methyladenine, 3-MA) inhibited the neuroprotective effects of EA. Moreover, 3-MA increased the apoptosis and the expression of TNF-α, IL-1β, and MMP-9. In summary, these findings suggested that EA preconditioning and postconditioning could alleviate spinal cord I/R injury, which was partly mediated by autophagy upregulation-induced inhibition of apoptosis and neuroinflammation.


Trials | 2015

Preoperative versus postoperative ultrasound-guided rectus sheath block for improving pain, sleep quality and cytokine levels of patients with open midline incisions undergoing transabdominal gynaecological operation: study protocol for a randomised controlled trial

Feng Jin; Xiao-Qian Li; Wen-Fei Tan; Hong Ma; Huang-wei Lu

BackgroundRectus sheath block (RSB) is used for postoperative pain relief in patients undergoing abdominal surgery with midline incision. Preoperative RSB has been shown to be effective, but it has not been compared with postoperative RSB. The aim of the present study is to evaluate postoperative pain, sleep quality and changes in the cytokine levels of patients undergoing gynaecological surgery with RSB performed preoperatively versus postoperatively.Methods/DesignThis study is a prospective, randomised, controlled (randomised, parallel group, concealed allocation), single-blinded trial. All patients undergoing transabdominal gynaecological surgery will be randomised 1:1 to the treatment intervention with general anaesthesia as an adjunct to preoperative or postoperative RSB. The objective of the trial is to evaluate postoperative pain, sleep quality and changes in the cytokine levels of patients undergoing gynaecological surgery with RSB performed preoperatively (n = 32) versus postoperatively (n = 32). All of the patients, irrespective of group allocation, will receive patient-controlled intravenous analgesia (PCIA) with oxycodone.The primary objective is to compare the interval between leaving the post-anaesthesia care unit and receiving the first PCIA bolus injection on the first postoperative night between patients who receive preoperative versus postoperative RSB. The secondary objectives will be to compare (1) cumulative oxycodone consumption at 24 hours after surgery; (2) postoperative sleep quality, as measured using a BIS-Vista monitor during the first night after surgery; and (3) cytokine levels (interleukin-1, interleukin-6, tumour necrosis factor-α and interferon-γ) during surgery and at 24 and 48 hours postoperatively.DiscussionClinical experience has suggested that RSB is a very effective postoperative analgesic technique, and we will answer the following questions with this trial. Do preoperative block and postoperative block have the same duration of analgesic effects? Can postoperative block extend the analgesic time? The results of this study could have actual clinical applications that could help to reduce postoperative pain and shorten hospital stays.Trial registrationCurrent Controlled Trials NCT02477098 15 June 2015.

Collaboration


Dive into the Xiao-Qian Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Wang

China Medical University (PRC)

View shared research outputs
Top Co-Authors

Avatar

Xintong Zhang

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Paul F. White

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge