Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Quan Wang is active.

Publication


Featured researches published by Xiao-Quan Wang.


Molecular Ecology | 2008

Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change

Fu-Sheng Yang; Yu-Fei Li; Xin Ding; Xiao-Quan Wang

The Qinghai‐Tibetan Plateau (QTP) is thought to be more strongly affected by the Quaternary glaciations than most other regions of the same latitude. It would be of great interest to investigate the population genetic structure of organisms distributed on the platform and its correlation with the Quaternary climatic oscillations. Here we used the chloroplast (cp)DNA trnT‐trnF sequence to study genetic variation and phylogeography of Pedicularis longiflora, an alpine herb with extensive distribution on the QTP. Based on a range‐wide sampling comprising 41 populations and 910 individuals, we detected 30 cpDNA haplotypes that were divided into five clades by phylogenetic and network analyses and a strong phylogeographical structure. All haplotypes but one in the three basal clades occur exclusively in the southeast QTP, whereas haplotypes in the young clade V occupy almost the whole species range. In particular, the young haplotype H18 occurs in 420 individuals, even at a frequency of 100% in some QTP platform populations and the Altai population. The haplotype distribution pattern, together with molecular clock estimation and mismatch distribution analysis, suggests that the southeast QTP was either a refuge for P. longiflora during the Quaternary climatic change or is the place of origin of the species. The present wide distribution of the species on the QTP platform has resulted from recent population expansions which could be dated back to 120 000–17 000 years ago, a period mostly before the last glacial maximum. The possible relationships among geographic genetic structure, climatic change and species diversification in Pedicularis are also discussed.


Molecular Phylogenetics and Evolution | 2010

Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation

Yu-Zhi Cun; Xiao-Quan Wang

The Himalaya-Hengduan Mountains region (HHM) in the southern and southeastern Qinghai-Tibetan Plateau (QTP) is considered an important reservoir and a differentiation center for temperate and alpine plants in the Cenozoic. To reveal how plants responded to the Quaternary climatic oscillations in the QTP, the phylogeographical histories of a few subalpine and alpine plants have been investigated, but nearly all studies used only uniparentally inherited cytoplasmic DNA markers, and only a couple of them included sampling from the Himalaya. In this study, range-wide genetic variation of the Himalayan hemlock (Tsuga dumosa), an important forest species in the HHM, was surveyed using DNA markers from three genomes. All markers revealed genetic depauperation in the Himalaya and richness in the Hengduan Mountains populations. Surprisingly, population differentiation of this wind-pollinated conifer is very high in all three genomes, with few common and many private nuclear gene alleles. These results, together with fossil evidence, clearly indicate that T. dumosa recolonized the Himalaya from the Hengduan Mountains before the Last Glacial Maximum (LGM), accompanied with strong founder effects, and the influence of the earlier glaciations on demographic histories of the QTP plants could be much stronger than that of the LGM. The strong population differentiation in T. dumosa could be attributed to restricted gene flow caused by the complicated topography in the HHM that formed during the uplift of the QTP, and thus sheds lights on the importance of geographical isolation in the development of high plant species diversity in this biodiversity hotspot.


PLOS ONE | 2014

Phylogeny and Divergence Times of Gymnosperms Inferred from Single-Copy Nuclear Genes

Ying Lu; Jin-Hua Ran; Dong-Mei Guo; Zu-Yu Yang; Xiao-Quan Wang

Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.


Molecular Ecology | 2003

Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine

Bao-Hua Song; Xiao-Quan Wang; Xiao-Ru Wang; Kai‐Yu Ding; De-Yuan Hong

Sequence and restriction site analyses of the paternally inherited chloroplast rbcL gene and maternally inherited mitochondrial nad1 fragments from the same set of populations and individuals were used to investigate cytoplasmic composition and population establishment of Pinus densata, a diploid pine that originated through hybridization between P. tabuliformis and P. yunnanensis. Two variable sites and three chlorotypes (TT, TC and GC) were detected on the rbcL gene of the three pines. P. densata harboured the three chlorotypes, two of which (TT, GC) were characteristic of the parental species, respectively. The third chlorotype (TC) was distributed extensively in seven of the 10 P. densata populations analysed, and might represent a mutation type or have been derived from an extinct parent. The distribution of chlorotypes, together with that of mitotypes, indicated that significant founder effect and backcross happened during the population establishment of the hybrid pine. P. tabuliformis and P. yunnanensis had acted as both mother and father donors, i.e. bi‐directional gene flow existed between the two parental species in the past. Population differentiation of P. densata is high, as detected from the cytoplasmic genomes: GST = 0.533 for cpDNA and GST = 0.905 for mtDNA. The differences in cytoplasmic composition among the hybrid populations suggest that the local populations have undergone different evolutionary histories.


Molecular Phylogenetics and Evolution | 2014

Evolution and biogeography of gymnosperms

Xiao-Quan Wang; Jin-Hua Ran

Living gymnosperms comprise only a little more than 1000 species, but represent four of the five main lineages of seed plants, including cycads, ginkgos, gnetophytes and conifers. This group has huge ecological and economic value, and has drawn great interest from the scientific community. Here we review recent advances in our understanding of gymnosperm evolution and biogeography, including phylogenetic relationships at different taxonomic levels, patterns of species diversification, roles of vicariance and dispersal in development of intercontinental disjunctions, modes of molecular evolution in different genomes and lineages, and mechanisms underlying the formation of large nuclear genomes. It is particularly interesting that increasing evidence supports a sister relationship between Gnetales and Pinaceae (the Gnepine hypothesis) and the contribution of recent radiations to present species diversity, and that expansion of retrotransposons is responsible for the large and complex nuclear genome of gymnosperms. In addition, multiple coniferous genera such as Picea very likely originated in North America and migrated into the Old World, further indicating that the center of diversity is not necessarily the place of origin. The Bering Land Bridge acted as an important pathway for dispersal of gymnosperms in the Northern Hemisphere. Moreover, the genome sequences of conifers provide an unprecedented opportunity and an important platform for the evolutionary studies of gymnosperms, and will also shed new light on evolution of many important gene families and biological pathways in seed plants.


Molecular Phylogenetics and Evolution | 2012

Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography.

Zu-Yu Yang; Jin-Hua Ran; Xiao-Quan Wang

Phylogenetic information is essential to interpret the evolution of species. While DNA sequences from different genomes have been widely utilized in phylogenetic reconstruction, it is still difficult to use nuclear genes to reconstruct phylogenies of plant groups with large genomes and complex gene families, such as gymnosperms. Here, we use two single-copy nuclear genes, together with chloroplast and mitochondrial genes, to reconstruct the phylogeny of the ecologically-important conifer family Cupressaceae s.l., based on a complete sampling of its 32 genera. The different gene trees generated are highly congruent in topology, supporting the basal position of Cunninghamia and the seven-subfamily classification, and the estimated divergence times based on different datasets correspond well with each other and with the oldest fossil record. These results imply that we have obtained the species phylogeny of Cupressaceae s.l. In addition, possible origins of all three polyploid conifers were investigated, and a hybrid origin was suggested for Cupressus, Fitzroya and Sequoia. Moreover, we found that the biogeographic history of Cupressaceae s.l. is associated with the separation between Laurasia and Gondwana and the further break-up of the latter. Our study also provides new evidence for the gymnosperm phylogeny.


Journal of Molecular Evolution | 2010

Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD.

Dong-Mei Guo; Jin-Hua Ran; Xiao-Quan Wang

Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.


Plant Systematics and Evolution | 2003

Unexpected high divergence in nrDNA ITS and extensive parallelism in floral morphology of Pedicularis (Orobanchaceae)

Fu-Sheng Yang; Xiao-Quan Wang; De-Yuan Hong

Abstract.Internal transcribed spacer (ITS) region sequences of nuclear ribosomal DNA (nrDNA) were used in the phylogenetic reconstruction of Pedicularis, a genus with strong adaptive radiation. Forty-two species representing 12 greges of the genus were all, except P. resupinata, sampled from the Hengduan Mountain region, China. A high level of ITS sequence variation was found among the species distributed in such a small geographical area, which had been rarely reported in other groups. The great ITS divergence in Pedicularis could be explained by a relatively ancient origin and diversification of the genus followed by migration of different floristic components into the Hengduan Mountains, or accelerated rates of molecular evolution in parasitic lineages of Orobanchaceae. In the present ITS phylogeny, almost all the main clades are not consistent with the high hierarchical taxa within Pedicularis, which implies that significant parallel evolution occurred in floral morphology of the genus, and that undue attention has been paid to corolla characters in the intragenus classifications.


Molecular Phylogenetics and Evolution | 2008

Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America

Dan Peng; Xiao-Quan Wang

The eastern Asia-North America disjunction is one of the most interesting biogeographical patterns, but its formation is still in much debate. Here nucleotide sequences of five cpDNA regions, nrDNA ITS and two low-copy nuclear genes (LEAFY, 4CL) were employed to reconstruct the phylogeny and to explore the historical biogeography of Thuja, a typical eastern Asia-North America disjunct genus. High topological discordance was observed between chloroplast and nuclear gene trees, even between different nuclear gene trees, suggesting that Thuja could have a reticulate evolutionary history due to multiple interspecific hybridization events. The eastern Asian species Thuja koraiensis might have obtained its chloroplast genome from the eastern North American species T. occidentalis by chloroplast capture, while the western North American species T. plicata is very likely to have inherited a recombinant cpDNA. Based on the phylogenetic analysis of multiple genes, DIVA-reconstruction of the distribution history, molecular clock estimation and fossil data, we inferred that Thuja could have originated from the high-latitude areas of North America in the Paleocene or earlier with subsequent expansion into eastern Asia through the Bering Land Bridge. The two eastern Asia species T. standishii and T. sutchuenensis have a sister relationship, and their split could have occurred in the Oligocene or early Miocene. In the present study, the selection of molecular markers in biogeographic studies was also discussed. Since most previous studies on the eastern Asia and North America disjunction are based on uniparentally inherited cpDNA and (or) directly sequenced nrDNA ITS data, the historical reticulate evolution in the studied groups might have been underestimated. Therefore, we suggest that multiple genes from different genomes, especially low-copy nuclear genes, be used in this research area in the future.


Molecular Ecology | 2002

Maternal lineages of Pinus densata, a diploid hybrid.

Bao-Hua Song; Xiao-Quan Wang; Xiao-Ru Wang; Lan-Ju Sun; De-Yuan Hong; Pei-Hao Peng

Previous morphological, allozyme and chloroplast DNA data have suggested that Pinus densata originated through hybridization between P. tabuliformis and P. yunnanensis. In the present study, sequence and restriction site analyses of maternally inherited mitochondrial nad1 intron were used to detect variation patterns in 19 populations of P. tabuliformis, P. yunnanensis and P. densata. A total of three mitotypes (A, B, C) were detected. All but one of the populations of P. yunnanensis possessed mitotype B while all populations of P. tabuliformis had mitotype A. Pinus densata populations, on the other hand, harboured both mitotypes A and B, which are characteristic of P. tabuliformis and P. yunnanensis, respectively. This result gives strong additional evidence supporting the hybrid origin of this diploid pine. The distribution of mitotypes indicated very different mating compositions and evolutionary history among P. densata populations. It seems that local founder populations and backcrosses may have played important roles in the early establishment of P. densata populations. The uplift of the Tibetan Plateau had a significant impact on the distribution of maternal lineages of P. densata populations.

Collaboration


Dive into the Xiao-Quan Wang's collaboration.

Top Co-Authors

Avatar

Jin-Hua Ran

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

De-Yuan Hong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Xin Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fu-Sheng Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bao-Hua Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Da-Ming Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dong-Mei Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ting-Ting Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wen-Juan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu-Zhi Cun

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge