Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-Yun Wang is active.

Publication


Featured researches published by Xiao-Yun Wang.


Plant Cell Reports | 2013

A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis

Ying Lu; Hua-Rong Wang; Han Li; Hao-Ran Cui; Yue-Guang Feng; Xiao-Yun Wang

Key messageThe role of LTO1/AtVKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied inlto1-2mutant, and a potential target of LTO1 was captured.AbstractA chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, l-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.


Molecular Genetics and Genomics | 2015

Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome.

Haoran Cui; Zhengrong Zhang; Wei Lv; Jia-Ning Xu; Xiao-Yun Wang

The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40–50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.


Frontiers in Plant Science | 2015

The conservative cysteines in transmembrane domain of AtVKOR/LTO1 are critical for photosynthetic growth and photosystem II activity in Arabidopsis

Jia-Jia Du; Chun-Yan Zhan; Ying Lu; Hao-Ran Cui; Xiao-Yun Wang

Thylakoid protein vitamin K epoxide reductase (AtVKOR/LTO1) is involved in oxidoreduction. The deficiency of this compound causes pleiotropic defects in Arabidopsis thaliana, such as severely stunted growth, smaller sized leaves, and delay of flowering. Transgenic complementation of wild-type AtVKOR (VKORWT) to vkor mutant lines ultimately demonstrates that the phenotype changes are due to this gene. However, whether AtVKOR functions in Arabidopsis through its protein oxidoreduction is unknown. To further study the redox-active sites of AtVKOR in vivo, a series of plasmids containing cysteine-mutant VKORs were constructed and transformed into vkor deficient lines. Compared with transgenic AtVKORWT plants, the size of the transgenic plants with a single conservative cysteine mutation (VKORC109A, VKORC116A, VKORC195A, and VKORC198A) were smaller, and two double-cysteine mutations (VKORC109AC116A and VKORC195AC198A) showed significantly stunted growth, similar with the vkor mutant line. However, mutations of two non-conservative cysteines (VKORC46A and VKORC230A) displayed little obvious changes in the phenotypes of Arabidopsis. Consistently, the maximum and actual efficiency of photosystem II (PSII) in double-cysteine mutation plants decreased significantly to the level similar to that of the vkor mutant line both under normal growth light and high light. A significantly decreased amount of D1 protein and increased accumulation of reactive oxygen species were observed in two double-cysteine mutations under high light. All of the results above indicated that the conservative cysteines in transmembrane domains were the functional sites of AtVKOR in Arabidopsis and that the oxidoreductase activities of AtVKOR were directly related to the autotrophic photosynthetic growth and PSII activity of Arabidopsis thaliana.


Frontiers in Plant Science | 2016

Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome

Jia-Ning Xu; Shanshan Xing; Zhengrong Zhang; Xuesen Chen; Xiao-Yun Wang

Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants.


Journal of Photochemistry and Photobiology B-biology | 2014

The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation.

Zhi-Bo Yu; Ying Lu; Jia-Jia Du; Jun-Jie Peng; Xiao-Yun Wang

The thylakoid protein LTO1/AtVKOR-DsbA is recently found to be an oxidoreductase involved in disulfide bond formation and the assembly of photosystem II (PSII) in Arabidopsis thaliana. In this study, experimental evidence showed that LTO1 deficiency caused severe photoinhibition which was related to the xanthophyll cycle and D1 protein degradation. The lto1-2 mutant was more sensitive to intense irradiance than wild type. When treated with different concentrations of dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidase (VDE) in the xanthophyll cycle, there was a larger reduction in NPQ in the wild type than in the lto1-2 mutant under high irradiance, indicating that lto1-2 had a lower sensitivity to DTT gradients than did the wild type. Zeaxanthin in the xanthophyll cycle, which participates in the thermal dissipation of excess absorbed light energy, was much less active in lto1-2 than in the wild type under intense light levels, and the de-epoxidation state of the xanthophyll cycle was consistent with the susceptibility of NPQ. Together these observations indicated that aggravated photoinhibition in lto1-2 was related to a reduction in xanthophyll cycle-associated energy dissipation. When D1 protein synthesis was suppressed by an inhibitor of chloroplast protein synthesis (streptomycin sulfate), the levels of D1 protein decreased more in the lto1-2 mutant than in the wild type when exposed to intense light levels, implying that a deficiency in LTO1 accelerated the degradation of D1 and thus affected D1 turnover. Transgenic complementation of plants with lto1-2 ultimately allowed for the recovery of the photoinhibition properties of leaves.


Molecular Genetics and Genomics | 2016

Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses

Jia-Ning Xu; Shanshan Xing; Haoran Cui; Xuesen Chen; Xiao-Yun Wang

The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1–MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron–exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.


Protein and Peptide Letters | 2015

Identification of Potential Targets for Thylakoid Oxidoreductase AtVKOR/LTO1 in Chloroplasts

Ying Lu; Jia-Jia Du; Zhi-Bo Yu; Jun-Jie Peng; Jia-Ning Xu; Xiao-Yun Wang

The Arabidopsis thylakoid membrane bimodular oxidoreductase, AtVKOR, could catalyze disulfide bond formation, and its direct functional domain (thioredoxin-like domain) is located in the thylakoid lumen according to the topological structure. Many proteins have one or several disulfide bonds in the thylakoid lumen, including photosynthetic chain components. A yeast two-hybrid assay was used to identify potential targets for the AtVKOR, and a Trx-like domain was constructed into a BD vector as bait. Twenty-two thylakoid lumenal proteins with disulfides were selected. The cDNAs encoding these proteins were constructed into an AD vector. Eight proteins were identified from the hybrid results to interact with AtVKOR, including HCF164, cytochrome c6A, violaxanthin deepoxidase, embryo sac development arrest 3 protein (EDA3), two members pentapeptide repeat proteins (TL17 and TL20.3), and two FK-506 binding proteins (FKBP13 and FKBP20-2). The BIACORE system was used to demonstrate that the recombinant HCF164 and Trx-like domain of AtVKOR could interact directly in vitro. The KD value for binding HCF164 to AtVKOR was calculated as 2.5×10(-6) M. These results suggest that AtVKOR can interact with partial thylakoid lumenal proteins and indicates AtVKOR plays an important role in regulating the thylakoid lumen redox.


Protein and Peptide Letters | 2014

Key Amino Acids of Arabidopsis VKOR in the Activity of Phylloquinone Reduction and Disulfide Bond Formation

Xiao-Jian Yang; Hao-Ran Cui; Zhi-Bo Yu; Jia-Jia Du; Jia-Ning Xu; Xiao-Yun Wang

Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone reduction in vitro. It is also called LTO1 (Lumen Thiol Oxidoreductase 1). Investigations about functions and essential amino acid residues of AtVKOR have important theoretical significance to clarify the chloroplast redox regulation mechanism. In this study, several amino acids in the VKOR domain of AtVKOR were identified to be involved in binding of phylloquinone. Site-directed mutagenesis was used to study the function of these positions. The results suggested that residues Ser77, Leu87, Phe137 and Leu141 were quite important in the binding and catalyzing the reduction of phylloquinone. These residues were also involved in the electron transferring and disulfide bond formation of substrate proteins by motility assays in vivo, suggesting that the binding of phylloquinone not only affected the delivery of electrons to phylloquinone but also affected the whole electron transfer process. The conserved cysteines in the AtVKOR domain also played critical roles in phylloquinone reduction. When each of the four conserved cysteines was mutated to alanine, the mutants lost reduction activity entirely, suggesting that the four conserved cysteines played crucial roles in the electron transfer process.


Biochemistry | 2014

Identification and characterization of SlVKOR, a disulfide bond formation protein from Solanum lycopersicum, and bioinformatic analysis of plant VKORs

Chun-Mei Wan; Xiao-Jian Yang; Jia-Jia Du; Ying Lu; Zhi-Bo Yu; Yue-Guang Feng; Xiao-Yun Wang

Homologs of vitamin K epoxide reductase (VKOR) exist widely in plants. However, only VKOR of Arabidopsis thaliana has been the subject of many studies to date. In the present study, the coding region of a VKOR from Solanum lyco-persicum (JF951971 in GenBank) was cloned; it contained a membrane domain (VKOR domain) and an additional soluble thioredoxin-like (Trx-like) domain. Bioinformatic analysis showed that the first 47 amino acids in the N-terminus should act as a transit peptide targeting the protein to the chloroplast. Western blot demonstrated that the protein is localized in thylakoid membrane with the Trx-like domain facing the lumen. Modeling of three-dimensional structure showed that SlVKOR has a similar conformation with Arabidopsis and cyanobacterial VKORs, with five transmembrane segments in the VKOR domain and a typical Trx-like domain in the lumen. Functional assay showed that the full-length of SlVKOR with Trx-like domain without the transit peptide could catalyze the formation of disulfide bonds. Similar transit peptides at the N-terminus commonly exist in plant VKORs, most of them targeting to chloroplast according to prediction. Comparison of sequences and structures from different plants indicated that all plant VKORs possess two domains, a transmembrane VKOR domain and a soluble Trx-like domain, each having four conservative cysteines. The cysteines were predicted to be related to the function of catalyzing the formation of disulfide bonds.


Molecular Genetics and Genomics | 2018

Genome-wide identification and expression analysis of the B-box gene family in the Apple ( Malus domestica Borkh.) genome

Xin Liu; Rong Li; Yaqing Dai; Xuesen Chen; Xiao-Yun Wang

The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.

Collaboration


Dive into the Xiao-Yun Wang's collaboration.

Top Co-Authors

Avatar

Jia-Jia Du

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jia-Ning Xu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ying Lu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Bo Yu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuesen Chen

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhengrong Zhang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin Liu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hao-Ran Cui

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haoran Cui

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun-Jie Peng

Shandong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge