Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaobin Liang is active.

Publication


Featured researches published by Xiaobin Liang.


Advanced Materials | 2013

Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers.

Javier Ramón-Azcón; Samad Ahadian; Mehdi Estili; Xiaobin Liang; Serge Ostrovidov; Hirokazu Kaji; Hitoshi Shiku; Murugan Ramalingam; Ken Nakajima; Yoshio Sakka; Ali Khademhosseini; Tomokazu Matsue

Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with cells cultured on pristine and randomly distributed CNTs in GelMA hydrogels.


Scientific Reports | 2015

Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

Samad Ahadian; Javier Ramón-Azcón; Mehdi Estili; Xiaobin Liang; Serge Ostrovidov; Hitoshi Shiku; Murugan Ramalingam; Ken Nakajima; Yoshio Sakka; Hojae Bae; Tomokazu Matsue; Ali Khademhosseini

Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.


Biomaterials | 2014

Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds

Serge Ostrovidov; Xuetao Shi; Ling Zhang; Xiaobin Liang; Sang Bok Kim; Toshinori Fujie; Murugan Ramalingam; Mingwei Chen; Ken Nakajima; Faten Al-Hazmi; Hojae Bae; Adnan Memic; Ali Khademhosseini

Engineering functional muscle tissue requires the formation of densely packed, aligned, and mature myotubes. To enhance the formation of aligned myotubes with improved contractibility, we fabricated aligned electrospun gelatin multi-walled carbon nanotubes (MWNTs) hybrid fibers that were used as scaffolds for the growth of myoblasts (C2C12). The MWNTs significantly enhanced myotube formation by improving the mechanical properties of the resulting fibers and upregulated the activation of mechanotransduction related genes. In addition, the fibers enhanced the maturation of the myotubes and the amplitude of the myotube contractions under electrical stimulation (ES). Such hybrid material scaffolds may be useful to direct skeletal muscle cellular organization, improve cellular functionality and tissue formation.


Acta Biomaterialia | 2016

Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies

Samad Ahadian; Shukuyo Yamada; Javier Ramón-Azcón; Mehdi Estili; Xiaobin Liang; Ken Nakajima; Hitoshi Shiku; Ali Khademhosseini; Tomokazu Matsue

UNLABELLED Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1Hz; voltage, 3V; duration, 10ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications. STATEMENT OF SIGNIFICANCE Dielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy.


RSC Advances | 2014

Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films

Samad Ahadian; Javier Ramón-Azcón; Haixin Chang; Xiaobin Liang; Hirokazu Kaji; Hitoshi Shiku; Ken Nakajima; Murugan Ramalingam; Hongkai Wu; Tomokazu Matsue; Ali Khademhosseini

The electrical conductivity of graphene provides a unique opportunity to modify the behavior of electrically sensitive cells. Here, we demonstrate that C2C12 myoblasts that were cultured on ultrathin thermally reduced graphene (TR-Graphene) films had more favorable cell adhesion and spreading compared to those on graphene oxide (GO) and glass slide substrates, comparable with conventional Petri dish. More importantly, we demonstrate that electrical stimulation significantly enhanced myoblast cell differentiation on a TR-Graphene substrate compared to GO and glass slide surfaces as confirmed by the expression of myogenic genes and proteins. These results highlight the potential applications of graphene-based materials for cell-based studies, bioelectronics, and biorobotics.


Journal of Electron Microscopy | 2014

Nano-palpation AFM and its quantitative mechanical property mapping

Ken Nakajima; Makiko Ito; Dong Wang; Hao Liu; Hung Kim Nguyen; Xiaobin Liang; Akemi Kumagai; So Fujinami

We review nano-palpation atomic force microscopy, which offers quantitative mechanical property mapping especially for soft materials. The method measures force-deformation curves on the surfaces of soft materials. The emphasis is placed on how both Hertzian and Derjaguin-Muller-Toporov contact mechanics fail to reproduce the experimental curves and, alternatively, how the Johnson-Kendall-Roberts model does. We also describe the force-volume technique for obtaining a two-dimensional map of mechanical properties, such as the elastic modulus and adhesive energy, based on the above-mentioned analysis. Finally, we conclude with several counterpart measurements, which describe the viscoelastic nature of soft materials, and give examples, including vulcanized isoprene rubber and the current status of ISO standardization.


Biomaterials | 2015

Spatial coordination of cell orientation directed by nanoribbon sheets

Toshinori Fujie; Xuetao Shi; Serge Ostrovidov; Xiaobin Liang; Ken Nakajima; Yin Chen; Hongkai Wu; Ali Khademhosseini

Spatial coordination of cell orientation is of central importance in tissue/organ construction. In this study, we developed microfabricated poly(lactic-co-glycolic acid) (PLGA) nanoribbon sheets with unique structures, using spin-coating and micropatterning techniques, in order to generate a hierarchically assembled cellular structure consisting of murine skeletal myoblasts (C2C12). The nanoribbon sheets were composed of aligned PLGA nanoribbons in the center, and strips on four sides which take a role as bridges to connect and immobilize the aligned nanoribbons. Such unique structures facilitated the alignment of C2C12 cells into bilayer cell sheets, and cellular alignment was directed by the aligned direction of nanoribbons. The nanoribbon sheets also facilitated the construction of multilayer cell sheets with anisotropic (orthogonal) and isotropic (parallel) orientations. The enhanced expression of myogenic genes of C2C12 cells on the bilayer cell sheets demonstrated that the nanoribbons induced C2C12 cell differentiation into mature myoblasts. The micropatterned nanoribbon sheets may be a useful tool for directing cellular organization with defined alignment for regenerative medicine and drug screening applications.


Langmuir | 2014

Microfluidic Generation of Polydopamine Gradients on Hydrophobic Surfaces

Xuetao Shi; Serge Ostrovidov; Yiwei Shu; Xiaobin Liang; Ken Nakajima; Hongkai Wu; Ali Khademhosseini

Engineered surface-bound molecular gradients are of great importance for a range of biological applications. In this paper, we fabricated a polydopamine gradient on a hydrophobic surface. A microfluidic device was used to generate a covalently conjugated gradient of polydopamine (PDA), which changed the wettabilty and the surface energy of the substrate. The gradient was subsequently used to enable the spatial deposition of adhesive proteins on the surface. When seeded with human adipose mesenchymal stem cells, the PDA-graded surface induced a gradient of cell adhesion and spreading. The PDA gradient developed in this study is a promising tool for controlling cellular behavior and may be useful in various biological applications.


Applied Physics Letters | 2015

Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface

Chunlin Chen; Shuhui Lv; Junjie Li; Zhongchang Wang; Xiaobin Liang; Yanxi Li; Ken Nakajima; Yuichi Ikuhara

Oxide heterostructures with the broken translational symmetry often trigger a two-dimensional quantum confinement and associated unique electronic properties that cannot be observed in bulk constituents. Particular interest is devoted to the formation of two-dimensional electron gas (2DEG) at heterointerfaces between two insulators, which offers a fertile ground for fabricating advanced electronic devices. Here, we combine atomic force microscopy, transmission electron microscopy, and atomistic first-principles calculations to demonstrate that the (100) BiFeO3/SrTiO3 interface takes on a metallic nature and a 2DEG is generated at this interface. Our findings also reveal that the electronic reconstruction due to the polar discontinuity and the variation in valence state of Ti arising from diffusion of Ti cations in SrTiO3 to Fe sites of BiFeO3 are critical to the formation of 2DEG at the heterointerface.


Angewandte Chemie | 2016

Two-Dimensional Skyrmion Lattice Formation in a Nematic Liquid Crystal Consisting of Highly Bent Banana Molecules.

Sungmin Kang; Eun-Woo Lee; Tianqi Li; Xiaobin Liang; Masatoshi Tokita; Ken Nakajima; Junji Watanabe

We synthesized a novel banana-shaped molecule based on a 1,7-naphthalene central core that exhibits a distinct mesomorphism of the nematic-to-nematic phase transition. Both the X-ray profile and direct imaging of atomic force microscopy (AFM) investigations clearly indicates the formation of an anomalous nematic phase possessing a two-dimensional (2D) tetragonal lattice with a large edge (ca. 59 Å) directed perpendicular to the director in the low-temperature nematic phase. One plausible model is proposed by an analogy of skyrmion lattice in which two types of cylinders formed from left- and right-handed twist-bend helices stack into a 2D tetragonal lattice, diminishing the inversion domain wall.

Collaboration


Dive into the Xiaobin Liang's collaboration.

Top Co-Authors

Avatar

Ken Nakajima

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Estili

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongkai Wu

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge