Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaochen Chen is active.

Publication


Featured researches published by Xiaochen Chen.


BioMed Research International | 2013

The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full-length ITS.

Jianping Han; Yingjie Zhu; Xiaochen Chen; Baoshen Liao; Hui Yao; Jingyuan Song; Shilin Chen; Fanyun Meng

An ideal DNA barcoding region should be short enough to be amplified from degraded DNA. In this paper, we discuss the possibility of using a short nuclear DNA sequence as a barcode to identify a wide range of medicinal plant species. First, the PCR and sequencing success rates of ITS and ITS2 were evaluated based entirely on materials from dry medicinal product and herbarium voucher specimens, including some samples collected back to 90 years ago. The results showed that ITS2 could recover 91% while ITS could recover only 23% efficiency of PCR and sequencing by using one pair of primer. Second, 12861 ITS and ITS2 plant sequences were used to compare the identification efficiency of the two regions. Four identification criteria (BLAST, inter- and intradivergence Wilcoxon signed rank tests, and TaxonDNA) were evaluated. Our results supported the hypothesis that ITS2 can be used as a minibarcode to effectively identify species in a wide variety of specimens and medicinal materials.


Gene | 2013

A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding.

Xiaochen Chen; Baosheng Liao; Jingyuan Song; Jianping Han; Shilin Chen

Medicinal plants of the Panax genus belonging to Araliaceae family are well-known, rare plants used as tonics in traditional Chinese medicine and have been described in the Chinese Pharmacopoeia. Because of the high price and the huge human demand, these commercial products often contain adulterants. In this study, 377 sequences from four species were analyzed. Single nucleotide polymorphisms (SNPs) were detected and patterns of intragenomic variation in internal transcribed spacer 2 (ITS2) from the four Panax species were studied. Intraspecific variations were analyzed based on three typical DNA barcodings (ITS2, matK and psbA-trnH). Results from this study revealed that intraspecific genetic distances in Panax ginseng and Panax quinquefolius were quite low (0-0.002) and the multi-copy ITS2 could be considered a single locus in the genomes of these two species. Five stable SNPs were detected in ITS2 region to identify the Panax medicinal species. Considering the mixed powder of P. ginseng and P. quinquefolius, double peaks could be clearly examined at SNP positions and the height of the peaks could indicate the mixed ratio roughly. Our findings indicate that SNP-based molecular barcodes could be developed as a routine method for the identification of the Panax genus with closely related species and the mixed powder P. ginseng and P. quinquefolius.


Frontiers in Plant Science | 2015

Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform

Xiaochen Chen; Qiushi Li; Ying Li; Jun Qian; Jianping Han

The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum.


Frontiers in Plant Science | 2015

Internal transcribed spacer 2 barcode: a good tool for identifying Acanthopanacis cortex

Sha Zhao; Xiaochen Chen; Jingyuan Song; Shilin Chen

Acanthopanacis cortex has been used in clinical applications for a long time. Considering some historical and geographical factors, Acanthopanacis cortex is easily confused with other herbs in medicine markets, thereby causing potential safety issues. In this study, we used the internal transcribed spacer 2 (ITS2) barcode to identify 69 samples belonging to six species, including Acanthopanacis cortex and its adulterants. The nearest distance, single-nucleotide polymorphisms (SNPs), and neighbor-joining (NJ) tree methods were used to evaluate the identification ability of the ITS2 barcode. According to the kimura-2-parameter model, the intraspecific distance of Eleutherococcus nodiflorus ITS2 sequences ranged from 0 to 0.0132. The minimum interspecific distance between E. nodiflorus and E. giraldii was 0.0221, which was larger than the maximum intraspecific distance of E. nodiflorus. Three stable SNPs in ITS2 can be used to distinguish Acanthopanacis cortex and its closely related species. The NJ tree indicated that the Acanthopanacis cortex samples clustered into one clade, which can be distinguished clearly from the adulterants of this herb. A secondary structure of ITS2 provided another dimensionality to identify species. In conclusion, the ITS2 barcode effectively identifies Acanthopanacis cortex, and DNA barcoding is a convenient tool for medicine market supervision.


Frontiers in Plant Science | 2016

A Nucleotide Signature for the Identification of American Ginseng and Its Products.

Yang Liu; Xiao-yue Wang; Lili Wang; Xiaochen Chen; Jianping Han

American ginseng (derived from Panax quinquefolius) is one of the most widely used medicinal herbs in the world. Because of its high price and increasing demand, there are many adulterants on the market. The proposed internal transcribed spacer 2 (ITS2) has been used to identify raw medicinal materials, but it is not suitable for the identification of Chinese patent medicine ingredients. Therefore, a short barcode for the identification of processed American ginseng and its corresponding Chinese patent medicines would be profitable. In this study, 94 samples of American ginseng and Asian ginseng were collected from all over the world. The ITS2 region was sequenced, and a nucleotide signature was developed based on one single nucleotide polymorphism (SNP) site unique to American ginseng. The nucleotide signature (atcactcctt tgcgggagtc gaggcgg) consists of 27 bases over the length of the ITS2 sequence (420 bp). Furthermore, we also designed primer pairs to amplify the nucleotide signature; the specific primer pair 4F/4R has been found to be unique to the ginseng species and capable of amplifying the nucleotide signatures from Chinese patent medicines and decoctions. We used the nucleotide signature method to inspect ginseng products in Chinese patent medicines; 24 batches of Chinese patent medicine from stores in Beijing were amplified and sequenced successfully. Using the double peaks at the SNP sites of the nucleotide signature, 5 batches were found to be counterfeits, and 2 batches were found to contain adulterants. Thus, this nucleotide signature, with only 27 bp, has broadened the application of DNA barcoding in identification of decoctions, Chinese patent medicines and other ginseng products with degraded DNA. This method can rapidly identify ginseng products and could also be developed as an on-site detection method.


Chinese Medicine | 2015

Identification of commercial Ganoderma (Lingzhi) species by ITS2 sequences

Baosheng Liao; Xiaochen Chen; Jianping Han; Yang Dan; Lili Wang; Wenjing Jiao; Jingyuan Song; Shilin Chen

AbstractBackgroundDNA barcoding can be used to authenticate Ganoderma species for safe use. This study aims to identify commercial products containing Ganoderma using DNA barcoding.MethodsWe used 63 internal transcribed spacer (ITS) 2 sequences of Ganoderma species from 33 newly-sequenced wild samples, crude drugs, mycelia, spores, and authentic extracts and spore oils collected from various locations and markets, as well as 30 sequences from GenBank. Sequences were assembled and aligned using CodonCode Aligner V3.71. Intra- and inter-specific distances were estimated by MEGA 6.0, and phylogeny reconstruction was based on the K2P model. SNP(s) and RNA secondary structure of ITS2 were analyzed and compared among closely related Ganoderma species.ResultsG. lucidum cultivated in China was different from those cultivated in Europe. “Chizhi” (G. lucidum) and “Zizhi” (G. sinense) were clustered into two clades that were separated from the other Ganoderma species. The fruiting bodies and commercial products of G. lucidum and G. sinense were successfully distinguished from those of other Ganoderma species by comparing the ITS2 sequences and RNA secondary structures.ConclusionThe DNA barcoding method is applicable to the authentication of commercial products containing Ganoderma species.


Scientific Reports | 2017

Identification of crude drugs in the Japanese pharmacopoeia using a DNA barcoding system

Xiaochen Chen; Li Xiang; Linchun Shi; Gang Li; Hui Yao; Jianping Han; Yulin Lin; Jingyuan Song; Shilin Chen

Kampo is the general designation for traditional Japanese herbal medicines, which are recognized as official medicines and listed in the Japanese pharmacopoeia (JP). In most cases, it is difficult to identify the crude drug materials to species level using only traditional identification methods. We report the first online DNA barcode identification system, which includes standard barcode sequences from approximately 95% of the species recorded in the JP (16th edition). This tool provides users with basic information on each crude drug recorded in the JP, DNA barcoding identification of herbal material, and the standard operating procedure (SOP) from sampling to data analysis. ITS2 sequences (psbA-trnH was an alternative when ITS2 could not be amplified) were generated from a total of 576 samples to establish the database. An additional 100 samples (from different medicinal parts, from both single origin and multiple origins and from both retailers and the planting base) were identified using the system. A total of 78% of the test samples were identified as the species listed on their label. This system establishes a model platform for other pharmacopeias from countries like China, Korea, the US and the European Union, for the safe and effective utilization of traditional herbal medicines.


BioMed Research International | 2017

Barcoding the Dendrobium (Orchidaceae) Species and Analysis of the Intragenomic Variation Based on the Internal Transcribed Spacer 2

Xiao-yue Wang; Xiaochen Chen; Pei Yang; Lili Wang; Jianping Han

Many species belonging to the genus Dendrobium are of great commercial value. However, their difficult growth conditions and high demand have caused many of these species to become endangered. Indeed, counterfeit Dendrobium products are common, especially in medicinal markets. This study aims to assess the suitability of the internal transcribed spacer 2 (ITS2) region as a marker for identifying Dendrobium and to evaluate its intragenomic variation in Dendrobium species. In total, 29,624 ITS2 copies from 18 species were obtained using 454 pyrosequencing to evaluate intragenomic variation. In addition, 513 ITS2 sequences from 26 Dendrobium species were used to assess its identification suitability. The highest intragenomic genetic distance was observed in Dendrobium chrysotoxum (0.081). The average intraspecific genetic distances of each species ranged from 0 to 0.032. Phylogenetic trees based on ITS2 sequences showed that most Dendrobium species are monophyletic. The intragenomic and intraspecies divergence analysis showed that greater intragenomic divergence is mostly correlated with larger intraspecific variation. As a major ITS2 variant becomes more common in genome, there are fewer intraspecific variable sites in ITS2 sequences at the species level. The results demonstrated that the intragenomic multiple copies of ITS2 did not affect species identification.


Journal of Natural Medicines | 2013

Use of the potential DNA barcode ITS2 to identify herbal materials

Linchun Shi; Jingyuan Song; Xiaochen Chen; Shilin Chen


Acta pharmaceutica Sinica | 2011

Identification of Daturae flos and its adulterants based on DNA barcoding technique

Jianping Han; Mei-ni Li; Kun Luo; Mei-zi Liu; Xiaochen Chen; Shilin Chen

Collaboration


Dive into the Xiaochen Chen's collaboration.

Top Co-Authors

Avatar

Jianping Han

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shilin Chen

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jingyuan Song

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hui Yao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lili Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Baosheng Liao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Linchun Shi

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiao-yue Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jun Qian

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Qiushi Li

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge