Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaochen Huang is active.

Publication


Featured researches published by Xiaochen Huang.


International Journal of Nanomedicine | 2014

Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots – a nano detection method for Mycobacterium tuberculosis

Hua Yang; Lianhua Qin; Yilong Wang; Bingbo Zhang; Zhonghua Liu; Hui Ma; Junmei Lu; Xiaochen Huang; Donglu Shi; Zhongyi Hu

Despite suffering from the major disadvantage of low sensitivity, microscopy of direct smear with the Ziehl–Neelsen stain is still broadly used for detection of acid-fast bacilli and diagnosis of tuberculosis. Here, we present a unique detection method of Mycobacterium tuberculosis (MTB) using surface functionalized magnetic microspheres (MMSs) coupled with quantum dots (QDs), conjugated with various antibodies and phage display-derived peptides. The principle is based upon the conformation of the sandwich complex composed of bacterial cells, MMSs, and QDs. The complex system is tagged with QDs for providing the fluorescent signal as part of the detection while magnetic separation is achieved by MMSs. The peptide ligand H8 derived from the phage display library Ph.D.-7 is developed for MTB cells. Using the combinations of MMS-polyclonal antibody+QD-H8 and MMS-H8+QD-H8, a strong signal of 103 colony forming units (CFU)/mL H37Rv was obtained with improved specificity. MS-H8+QD-H8 combination was further optimized by adjusting the concentrations of MMSs, QDs, and incubation time for the maximum detection signal. The limit of detection for MTB was found to reach 103 CFU/mL even for the sputum matrices. Positive sputum samples could be distinguished from control. Thus, this novel method is shown to improve the detection limit and specificity of MTB from the sputum samples, and to reduce the testing time for accurate diagnosis of tuberculosis, which needs further confirmation of more clinical samples.


BMC Infectious Diseases | 2011

Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009

Zhenling Cui; Jie Wang; Junmei Lu; Xiaochen Huang; Zhongyi Hu

BackgroundThis study aimed to analyze the association of mutation patterns in gyrA and gyrB genes and the ofloxacin resistance levels in clinical Mycobacterium tuberculosis isolates sampled in 2009 from East China.MethodsThe quinolone resistance-determining region of gyrA/B were sequenced in 192 M. tuberculosis clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant M. tuberculosis isolates were determined by using microplate nitrate reductase assays.ResultsMutations in gyrA (codons 90, 91 and 94) and in gyrB (G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The gyrB mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in gyrA in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in gyrA (F = 1.268, p = 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of gyrA (F = 1.877, p = 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in gyrA only and ofloxacin-resistant strains with mutations in both gyrA and gyrB genes was not statistically significant (F = 0.549, p = 0.461).ConclusionsAlthough gyrA/B mutations can lead to ofloxacin resistance in M. tuberculosis, there were no associations of different mutation patterns in gyrA/B and the level of ofloxacin resistance in M. tuberculosis isolates from East China in 2009.


Journal of Clinical Microbiology | 2013

Evaluation of Methods for Testing the Susceptibility of Clinical Mycobacterium tuberculosis Isolates to Pyrazinamide

Zhenling Cui; Jie Wang; Junmei Lu; Xiaochen Huang; Ruijuan Zheng; Zhongyi Hu

ABSTRACT Pyrazinamide (PZA) is a first-line antituberculosis (anti-TB) drug capable of killing nonreplicating, persistent Mycobacterium tuberculosis. However, reliable testing of the susceptibility of M. tuberculosis to PZA is challenging. Using 432 clinical M. tuberculosis isolates, we compared the performances of five methods for the determination of M. tuberculosis susceptibility to PZA: the MGIT 960 system, the molecular drug susceptibility test (mDST), the pyrazinamidase (PZase) activity assay, the resazurin microtiter assay (REMA), and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction test. The sensitivities of the MGIT 960 system, the PZase activity assay, the mDST, the REMA, and the MTT assay were 98.8%, 88.8%, 90.5%, 98.8%, and 98.2%, respectively. The sensitivities of the PZase activity assay and the mDST were lower than those of the other three methods (P < 0.05). The specificities of the MGIT 960 system, the PZase activity assay, the mDST, the REMA and the MTT assays were 99.2%, 98.9%, 90.9%, 98.5%, and 100%, respectively. The specificity of the mDST was lower than those of the other four methods (P < 0.05). In conclusion, the MGIT 960 system, the MTT assay, and the REMA are superior to the PZase activity assay and the mDST in determining the susceptibility of M. tuberculosis to PZA. The MTT assay and the REMA might serve as alternative methods for clinical laboratories without access to the MGIT 960 system. For rapid testing in well-equipped laboratories, the mDST might be the best choice, particularly for small quantities of M. tuberculosis. The PZase activity assay has no obvious advantage in the assessment of M. tuberculosis susceptibility to PZA, as it is less accurate and requires larger quantities of bacteria.


Journal of Clinical Microbiology | 2012

Novel Real-Time Simultaneous Amplification and Testing Method To Accurately and Rapidly Detect Mycobacterium tuberculosis Complex

Zhenling Cui; Liang Fang; Ruijuan Zheng; Xiaochen Huang; Xiaochen Liu; Gang Zhang; Dongmei Rui; Jinliang Ju; Zhongyi Hu

ABSTRACT The aim of this study was to establish and evaluate a simultaneous amplification and testing method for detection of the Mycobacterium tuberculosis complex (SAT-TB assay) in clinical specimens by using isothermal RNA amplification and real-time fluorescence detection. In the SAT-TB assay, a 170-bp M. tuberculosis 16S rRNA fragment is reverse transcribed to DNA by use of Moloney murine leukemia virus (M-MLV) reverse transcriptase, using specific primers incorporating the T7 promoter sequence, and undergoes successive cycles of amplification using T7 RNA polymerase. Using a real-time PCR instrument, hybridization of an internal 6-carboxyfluorescein–4-[4-(dimethylamino)phenylazo] benzoic acid N-succinimidyl ester (FAM-DABCYL)-labeled fluorescent probe can be used to detect RNA amplification. The SAT-TB assay takes less than 1.5 h to perform, and the sensitivity of the assay for detection of M. tuberculosis H37Rv is 100 CFU/ml. The TB probe has no cross-reactivity with nontuberculous mycobacteria or other common respiratory tract pathogens. For 253 pulmonary tuberculosis (PTB) specimens and 134 non-TB specimens, the SAT-TB results correlated with 95.6% (370/387 specimens) of the Bactec MGIT 960 culture assay results. The sensitivity, specificity, and positive and negative predictive values of the SAT-TB test for the diagnosis of PTB were 67.6%, 100%, 100%, and 62.0%, respectively, compared to 61.7%, 100%, 100%, and 58.0% for Bactec MGIT 960 culture. For PTB diagnosis, the sensitivities of the SAT-TB and Bactec MGIT 960 culture methods were 97.6% and 95.9%, respectively, for smear-positive specimens and 39.2% and 30.2%, respectively, for smear-negative specimens. In conclusion, the SAT-TB assay is a novel, simple test with a high specificity which may enhance the detection rate of TB. It is therefore a promising tool for rapid diagnosis of M. tuberculosis infection in clinical microbiology laboratories.


Applied Microbiology and Biotechnology | 2015

Identification and application of ssDNA aptamers against H37Rv in the detection of Mycobacterium tuberculosis

Rusitanmujiang Aimaiti; Lianhua Qin; Ting Cao; Hua Yang; Jie Wang; Junmei Lu; Xiaochen Huang; Zhongyi Hu

Microscopy of direct smear with the Ziehl–Neelsen stain is still broadly used in tuberculosis diagnosis. However, this method suffers from low specificity and is difficult to distinguish Mycobacterium tuberculosis (MTB) from nontuberculosis mycobacterial (NTM), since all mycobacterial species are positive in Ziehl-Neelsen stain. In this study, we utilized whole cell SELEX to obtain species-specific aptamers for increasing the specificity of MTB detection. Whole cell SELEX was performed in MTB reference strain H37Rv by two selection processes based on enzyme-linked plate or Eppendorf tube, respectively. To increase success rate of generating aptamers, the selection processes were systematically monitored to understand the dynamic evolution of aptamers against complex structure of target bacteria. Two preponderant groups and ten high-affinity aptamers were obtained by analyzing the dynamic evolution. Preponderant aptamer MA1 from group I showed relatively high binding affinity with apparent dissociation constant (KD value) of 12.02 nM. Sandwich ELISA assay revealed five aptamer combinations effectively bound MTB strains in preliminary evaluation, especially the combination based on aptamer MA2 (another preponderant aptamer from group II) and MA1. Further evaluated in many other strains, MA2/MA1 combination effectively identified MTB from NTM or other pathogenic bacteria, and displayed the high specificity and sensitivity. Binding analysis of aptamer MA1 or MA2 by fluorescence microscopy observation showed high binding reactivity with H37Rv, low apparent cross-reactivity with M. marinum, and no apparent cross-reactivity with Enterobacter cloacae. Taken together, this study provides attractive candidate species-specific aptamers to effectively capture or discriminate MTB strains.


Tuberculosis | 2015

Epstein–Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis

Ruijuan Zheng; Haipeng Liu; Peng Song; Yonghong Feng; Lianhua Qin; Xiaochen Huang; Jianxia Chen; Hua Yang; Zhonghua Liu; Zhenglin Cui; Zhongyi Hu; Baoxue Ge

Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection.


PLOS ONE | 2012

Evaluation of a novel biphasic culture medium for recovery of mycobacteria: a multi-center study.

Zhenling Cui; Jie Wang; Changtai Zhu; Xiaochen Huang; Junmei Lu; Qing Wang; Zhongnan Chen; Junling Wang; Yan Zhang; Delin Gu; Lingjie Jing; Jin Chen; Ruijuan Zheng; Lianhua Qin; Hua Yang; Ruiliang Jin; Zhonghua Liu; Aixiao Bi; Jinming Liu; Zhongyi Hu

Background Mycobacterial culture and identification provide a definitive diagnosis of TB. Culture on Löwenstein-Jensen (L-J) medium is invariably delayed because of the slow growth of M. tuberculosis on L-J slants. Automated liquid culture systems are expensive. A low-cost culturing medium capable of rapidly indicating the presence of mycobacteria is needed. The aim of this study was to develop and evaluate a novel biphasic culture medium for the recovery of mycobacteria from clinical sputum specimens from suspected pulmonary tuberculosis patients. Methods and Findings The biphasic medium consisted of 7 ml units of L-J slant medium, 3 ml units of liquid culture medium, growth indicator and a mixture of antimicrobial agents. The decontamination sediments of sputum specimens were incubated in the biphasic culture medium at 37°C. Mycobacterial growth was determined based on the appearance of red granule sediments and the examination using acid-fast bacilli (AFB). The clinical sputum specimens were cultured in the biphasic medium, on L-J slants and in the Bactec MGIT 960 culture system. Among smear-positive specimens, the mycobacteria recovery rate of the biphasic medium was higher than that of the L-J slants (P<0.001) and similar to that of MGIT 960 (P>0.05). Among smear-negative specimens, the mycobacterial recovery rate of the biphasic medium was higher than that of L-J slants (P<0.001) and lower than that of MGIT 960 (P<0.05). The median times to detection of mycobacteria were 14 days, 20 days and 30 days for cultures grown in MGIT, in biphasic medium, on L-J slants for smear negative specimens, respectively (P<0.001). Conclusions The biphasic culture medium developed in this study is low-cost and suitable for mycobacterial recovery. It does not require any expensive detection instrumentation, decreases the time required for detection of M. tuberculosis complex, and increases the detection rate of M. tuberculosis complex.


Emerging microbes & infections | 2018

Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis

Hua Yang; Wei Sha; Zhonghua Liu; Tianqi Tang; Haipeng Liu; Lianhua Qin; Zhenling Cui; Jianxia Chen; Feng Liu; Ruijuan Zheng; Xiaochen Huang; Jie Wang; Yonghong Feng; Baoxue Ge

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) infection remains a large global public health problem. One striking characteristic of Mtb is its ability to adapt to hypoxia and trigger the ensuing transition to a dormant state for persistent infection, but how the hypoxia response of Mtb is regulated remains largely unknown. Here we performed a quantitative acetylome analysis to compare the acetylation profile of Mtb under aeration and hypoxia, and showed that 377 acetylation sites in 269 Mtb proteins were significantly changed under hypoxia. In particular, deacetylation of dormancy survival regulator (DosR) at K182 promoted the hypoxia response in Mtb and enhanced the transcription of DosR-targeted genes. Mechanistically, recombinant DosRK182R protein demonstrated enhanced DNA-binding activity in comparison with DosRK182Q protein. Moreover, Rv0998 was identified as an acetyltransferase that mediates the acetylation of DosR at K182. Deletion of Rv0998 also promoted the adaptation of Mtb to hypoxia and the transcription of DosR-targeted genes. Mice infected with an Mtb strain containing acetylation-defective DosRK182R had much lower bacterial counts and less severe histopathological impairments compared with those infected with the wild-type strain. Our findings suggest that hypoxia induces the deacetylation of DosR, which in turn increases its DNA-binding ability to promote the transcription of target genes, allowing Mtb to shift to dormancy under hypoxia.


Chest | 2017

Hemostasis and Lipoprotein Indices Signify Exacerbated Lung Injury in TB With Diabetes Comorbidity

Zhengwei Dong; Jingyun Shi; Anca Dorhoi; Jie Zhang; Adiilah K Soodeen-Lalloo; Wenlin Chen; Hongyun Yin; Wei Sha; Weitong Li; Ruijuan Zheng; Zhonghua Liu; Hua Yang; Lianhua Qin; Jie Wang; Xiaochen Huang; Chunyan Wu; Stefan H. E. Kaufmann; Yonghong Feng

Background Exacerbated immunopathology is a frequent consequence of TB that is complicated by diabetes mellitus (DM); however, the underlying mechanisms are still poorly defined. Methods In the two groups of age‐ and sex‐matched patients with TB and DM (DM‐TB) and with TB and without DM, we microscopically evaluated the areas of caseous necrosis and graded the extent of perinecrotic fibrosis in lung biopsies from the sputum smear‐negative (SN) patients. We scored acid‐fast bacilli in sputum smear‐positive (SP) patients and compiled CT scan data from both the SN and SP patients. We compared inflammatory biomarkers and routine hematologic and biochemical parameters. Binary logistic regression analyses were applied to define the indices associated with the extent of lung injury. Results Enlarged caseous necrotic areas with exacerbated fibrotic encapsulations were found in SN patients with DM‐TB, consistent with the higher ratio of thick‐walled cavities and more bacilli in the sputum from SP patients with DM‐TB. Larger necrotic foci were detected in men compared with women within the SN TB groups. Significantly higher fibrinogen and lower high‐density lipoprotein cholesterol (HDL‐C) were observed in SN patients with DM‐TB. Regression analyses revealed that diabetes, activation of the coagulation pathway (shown by increased platelet distribution width, decreased mean platelet volume, and shortened prothrombin time), and dyslipidemia (shown by decreased low‐density lipoprotein cholesterol, HDL‐C, and apolipoprotein A) are risk factors for severe lung lesions in both SN and SP patients with TB. Conclusions Hemostasis and dyslipidemia are associated with granuloma necrosis and fibroplasia leading to exacerbated lung damage in TB, especially in patients with DM‐TB.


The Journal of Infectious Diseases | 2018

Notch4 Negatively Regulates the Inflammatory Response to Mycobacterium tuberculosis Infection by Inhibiting TAK1 Activation

Ruijuan Zheng; Haipeng Liu; Yilong Zhou; Dapeng Yan; Jianxia Chen; Dapeng Ma; Yonghong Feng; Lianhua Qin; Feng Liu; Xiaochen Huang; Jie Wang; Baoxue Ge

Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global threat to human health, but knowledge of the molecular mechanisms underlying the pathogenesis of tuberculosis is still limited. Although Notch4, a member of the Notch receptor family, is involved in the initiation of mammary tumors, its function in M. tuberculosis infection remains unclear. In this study, we found that Notch4-deficient mice were more resistant to M. tuberculosis infection, with a much lower bacterial burden and fewer pathological changes in the lungs. Notch4 inhibited M. tuberculosis-induced production of proinflammatory cytokines by interaction with TAK1 and inhibition of its activation. Furthermore, we found that Notch intracellular domain 4 prevented TRAF6 autoubiquitination and suppressed TRAF6-mediated TAK1 polyubiquitination. Finally, Notch inhibitors made mice more resistant to M. tuberculosis infection. These results suggest that Notch4 is a negative regulator of M. tuberculosis-induced inflammatory response, and treatment with a Notch inhibitor could serve as a new therapeutic strategy for tuberculosis.

Collaboration


Dive into the Xiaochen Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge