Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongyi Hu is active.

Publication


Featured researches published by Zhongyi Hu.


International Journal of Nanomedicine | 2014

Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots – a nano detection method for Mycobacterium tuberculosis

Hua Yang; Lianhua Qin; Yilong Wang; Bingbo Zhang; Zhonghua Liu; Hui Ma; Junmei Lu; Xiaochen Huang; Donglu Shi; Zhongyi Hu

Despite suffering from the major disadvantage of low sensitivity, microscopy of direct smear with the Ziehl–Neelsen stain is still broadly used for detection of acid-fast bacilli and diagnosis of tuberculosis. Here, we present a unique detection method of Mycobacterium tuberculosis (MTB) using surface functionalized magnetic microspheres (MMSs) coupled with quantum dots (QDs), conjugated with various antibodies and phage display-derived peptides. The principle is based upon the conformation of the sandwich complex composed of bacterial cells, MMSs, and QDs. The complex system is tagged with QDs for providing the fluorescent signal as part of the detection while magnetic separation is achieved by MMSs. The peptide ligand H8 derived from the phage display library Ph.D.-7 is developed for MTB cells. Using the combinations of MMS-polyclonal antibody+QD-H8 and MMS-H8+QD-H8, a strong signal of 103 colony forming units (CFU)/mL H37Rv was obtained with improved specificity. MS-H8+QD-H8 combination was further optimized by adjusting the concentrations of MMSs, QDs, and incubation time for the maximum detection signal. The limit of detection for MTB was found to reach 103 CFU/mL even for the sputum matrices. Positive sputum samples could be distinguished from control. Thus, this novel method is shown to improve the detection limit and specificity of MTB from the sputum samples, and to reduce the testing time for accurate diagnosis of tuberculosis, which needs further confirmation of more clinical samples.


Fems Immunology and Medical Microbiology | 2012

Interferon-gamma release assays for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis

Lin Fan; Zhou Chen; Xiao-Hui Hao; Zhongyi Hu; Heping Xiao

Interferon -gamma release assays (IGRAs) provide a new diagnostic method for Mycobacterium tuberculosis (TB) infection. However, the diagnostic value of IGRAs for extrapulmonary TB (EPTB) has not been clarified. We searched several databases and selected papers with strict inclusion criteria, evaluated the evidence of commercially available IGRAs (QuantiFERON(®) -TB Gold QFT-G or QFT-GIT and T-SPOT(®) .TB) on blood and the tuberculin skin test (TST) using random effects models. Twenty studies with 1711 patients were included. After excluding indeterminate results, pooled sensitivity for the diagnosis of EPTB was 72% [95% confidence interval (CI) 65-79%] for QFT-G or GIT and 90% (95% CI, 86-93%) for T-SPOT; in high-income countries the sensitivity of QFT-G or GIT (79%, 95% CI 72-86%) was much higher than that (29%, 95% CI 14-48%) in low/middle-income countries. Pooled specificity for EPTB was 82% (95% CI 78-87%) for QFT-G or GIT and 68% (95% CI 64-73%) for T-SPOT. Pooled sensitivity of TST from four studies in high-income countries was lower than that of IGRAs. T-SPOT was more sensitive in detecting EPTB than QFT-G or GIT and TST. However, both IGRAs and TST have similar specificity for EPTB. IGRAs have limited value as diagnostic tools to screen and rule out EPTB, especially in low/middle-income countries. The immune status of patients does not affect the diagnostic accuracy of IGRAs for EPTB.


BMC Infectious Diseases | 2011

Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009

Zhenling Cui; Jie Wang; Junmei Lu; Xiaochen Huang; Zhongyi Hu

BackgroundThis study aimed to analyze the association of mutation patterns in gyrA and gyrB genes and the ofloxacin resistance levels in clinical Mycobacterium tuberculosis isolates sampled in 2009 from East China.MethodsThe quinolone resistance-determining region of gyrA/B were sequenced in 192 M. tuberculosis clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant M. tuberculosis isolates were determined by using microplate nitrate reductase assays.ResultsMutations in gyrA (codons 90, 91 and 94) and in gyrB (G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The gyrB mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in gyrA in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in gyrA (F = 1.268, p = 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of gyrA (F = 1.877, p = 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in gyrA only and ofloxacin-resistant strains with mutations in both gyrA and gyrB genes was not statistically significant (F = 0.549, p = 0.461).ConclusionsAlthough gyrA/B mutations can lead to ofloxacin resistance in M. tuberculosis, there were no associations of different mutation patterns in gyrA/B and the level of ofloxacin resistance in M. tuberculosis isolates from East China in 2009.


Clinical Chemistry and Laboratory Medicine | 2009

The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis.

Lianhua Qin; Ruijuan Zheng; Zhanzhong Ma; Yonghong Feng; Zhonghua Liu; Hua Yang; Jie Wang; Ruiliang Jin; Junmei Lu; Yuansheng Ding; Zhongyi Hu

Abstract Background: Tuberculosis (TB) remains a major health problem affecting millions of people worldwide. One-third of the worlds population is infected with Mycobacterium tuberculosis, the etiologic agent of TB. A simple and rapid method to diagnose TB is urgently needed to be developed. The procedure of systematic evolution of ligands by exponential enrichment (SELEX) is a method in which single-stranded oligonucleotides (called aptamers) are selected from a wide variety of sequences, based on their interaction with a target molecule. Aptamers have been used in numerous investigations as therapeutic or diagnostic tools. Methods: In this study, we apply a SELEX method to develop aptamers against MPT64 protein from M. tuberculosis. On this basis, a sandwich assay scheme with the complex of aptamer-MPT64 was designed and tested the feasibility of detecting M. tuberculosis by detecting MPT64 protein levels in the culture filtrates of 77 samples including M. tuberculosis and other Mycobacterium species. Results: There was a highly significant difference (p<0.01) between group A (non-TB Mycobacterium, bacille Calmette-Guérin) and group B (M. tuberculosis, M. bovis), when they were diagnosed with the sandwich assay scheme based on aptamer-protein complex to detect MPT64 protein levels in the culture filtrates of samples. When the cut-off point was at the optical density value of 0.58 (95%=0.764–0.946; Z=6.130, p=0.0001), the sandwich assay scheme based on aptamer-protein complex had a high sensitivity (negative ration, 24/27, 86.3%) and specificity (positive ration, 46/52, 88.5%). Conclusions: Aptamer of MPT64 as a new detection tool, to a certain extent, is feasible to diagnose Mycobacterium tuberculosis. Clin Chem Lab Med 2009;47:405–11.


Human Immunology | 2011

Relationship between polymorphism of DC-SIGN (CD209) gene and the susceptibility to pulmonary tuberculosis in an eastern Chinese population

Ruijuan Zheng; Yan Zhou; Lianhua Qin; Ruiliang Jin; Jie Wang; Junmei Lu; WeiBing Wang; Shenjie Tang; Zhongyi Hu

Abstract Dendritic cell–specific intracellular adhesion molecule–3–grabbing nonintegrin (DC-SIGN) is an important receptor for Mycobacterium tuberculosis on human dendritic cells. Previous studies have shown that the variation, especially the −871A/G and −336A/G in DC-SIGN promoter influenced the susceptibility to tuberculosis. We therefore investigated whether polymorphisms in the DC-SIGN gene were associated with susceptibility to tuberculosis in an eastern Chinese population. A total of 237 culture-positive pulmonary tuberculosis case patients and 244 controls were genotyped for −871A/G and −336A/G by pyrosequencing. Our results suggested that the 2 promoter variants of DC-SIGN gene were not associated with susceptibility to tuberculosis in Chinese. Further analysis showed that the allele -336G was associated with a protective effect against fever in pulmonary tuberculosis patients, but not against cavity formation. In addition, we compared the allelic frequencies of −871A/G and −336A/G in African, Caucasian, and Asian groups. The results showed that the tw forms of allelic frequencies detected Chinese individuals in our study were similar to the reported frequencies in other Asian populations but differed significantly from those in the African and Caucasian groups studied.


Journal of Clinical Microbiology | 2013

Evaluation of Methods for Testing the Susceptibility of Clinical Mycobacterium tuberculosis Isolates to Pyrazinamide

Zhenling Cui; Jie Wang; Junmei Lu; Xiaochen Huang; Ruijuan Zheng; Zhongyi Hu

ABSTRACT Pyrazinamide (PZA) is a first-line antituberculosis (anti-TB) drug capable of killing nonreplicating, persistent Mycobacterium tuberculosis. However, reliable testing of the susceptibility of M. tuberculosis to PZA is challenging. Using 432 clinical M. tuberculosis isolates, we compared the performances of five methods for the determination of M. tuberculosis susceptibility to PZA: the MGIT 960 system, the molecular drug susceptibility test (mDST), the pyrazinamidase (PZase) activity assay, the resazurin microtiter assay (REMA), and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction test. The sensitivities of the MGIT 960 system, the PZase activity assay, the mDST, the REMA, and the MTT assay were 98.8%, 88.8%, 90.5%, 98.8%, and 98.2%, respectively. The sensitivities of the PZase activity assay and the mDST were lower than those of the other three methods (P < 0.05). The specificities of the MGIT 960 system, the PZase activity assay, the mDST, the REMA and the MTT assays were 99.2%, 98.9%, 90.9%, 98.5%, and 100%, respectively. The specificity of the mDST was lower than those of the other four methods (P < 0.05). In conclusion, the MGIT 960 system, the MTT assay, and the REMA are superior to the PZase activity assay and the mDST in determining the susceptibility of M. tuberculosis to PZA. The MTT assay and the REMA might serve as alternative methods for clinical laboratories without access to the MGIT 960 system. For rapid testing in well-equipped laboratories, the mDST might be the best choice, particularly for small quantities of M. tuberculosis. The PZase activity assay has no obvious advantage in the assessment of M. tuberculosis susceptibility to PZA, as it is less accurate and requires larger quantities of bacteria.


Journal of Clinical Microbiology | 2012

Novel Real-Time Simultaneous Amplification and Testing Method To Accurately and Rapidly Detect Mycobacterium tuberculosis Complex

Zhenling Cui; Liang Fang; Ruijuan Zheng; Xiaochen Huang; Xiaochen Liu; Gang Zhang; Dongmei Rui; Jinliang Ju; Zhongyi Hu

ABSTRACT The aim of this study was to establish and evaluate a simultaneous amplification and testing method for detection of the Mycobacterium tuberculosis complex (SAT-TB assay) in clinical specimens by using isothermal RNA amplification and real-time fluorescence detection. In the SAT-TB assay, a 170-bp M. tuberculosis 16S rRNA fragment is reverse transcribed to DNA by use of Moloney murine leukemia virus (M-MLV) reverse transcriptase, using specific primers incorporating the T7 promoter sequence, and undergoes successive cycles of amplification using T7 RNA polymerase. Using a real-time PCR instrument, hybridization of an internal 6-carboxyfluorescein–4-[4-(dimethylamino)phenylazo] benzoic acid N-succinimidyl ester (FAM-DABCYL)-labeled fluorescent probe can be used to detect RNA amplification. The SAT-TB assay takes less than 1.5 h to perform, and the sensitivity of the assay for detection of M. tuberculosis H37Rv is 100 CFU/ml. The TB probe has no cross-reactivity with nontuberculous mycobacteria or other common respiratory tract pathogens. For 253 pulmonary tuberculosis (PTB) specimens and 134 non-TB specimens, the SAT-TB results correlated with 95.6% (370/387 specimens) of the Bactec MGIT 960 culture assay results. The sensitivity, specificity, and positive and negative predictive values of the SAT-TB test for the diagnosis of PTB were 67.6%, 100%, 100%, and 62.0%, respectively, compared to 61.7%, 100%, 100%, and 58.0% for Bactec MGIT 960 culture. For PTB diagnosis, the sensitivities of the SAT-TB and Bactec MGIT 960 culture methods were 97.6% and 95.9%, respectively, for smear-positive specimens and 39.2% and 30.2%, respectively, for smear-negative specimens. In conclusion, the SAT-TB assay is a novel, simple test with a high specificity which may enhance the detection rate of TB. It is therefore a promising tool for rapid diagnosis of M. tuberculosis infection in clinical microbiology laboratories.


BMC Infectious Diseases | 2013

Evaluation of the clinical value of ELISA based on MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis.

Changtai Zhu; Jinming Liu; Yang Ling; Hua Yang; Zhonghua Liu; Ruijuan Zheng; Lianhua Qin; Zhongyi Hu

BackgroundPresently, tuberculosis (TB) poses a global threat to human health. The development of reliable laboratory tools is vital to the diagnosis and treatment of TB. MPT64, a protein secreted by Mycobacterium tuberculosis complex, is highly specific for TB, making antibody to MPT64 a reagent specific for the diagnosis of TB.MethodAntibody to MPT64 was obtained by a combination of genetic engineering and immunization by the system evolution of ligands by exponential enrichment. A high-affinity aptamer of antibody to MPT64 was selected from a random single-stranded DNA library, and a sandwich ELISA method based on this aptamer was developed. This ELISA method was used to detect TB in 328 serum samples, 160 from patients with pulmonary TB (PTB) and 168 from non-tuberculous controls.ResultsThe minimum limit of detection of the ELISA method was 2.5 mg/L, and its linear range varied from 10 mg/L to 800 mg/L. Its sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and area under the curve, with 95 % confidence intervals, were 64.4 % (56.7 %–71.4 %), 99.4 % (96.7 %–99.9 %), 108.2 (15.3–765.9), 0.350 (0.291–0.442) and 0.819 (0.770–0.868), respectively. No significant difference in sensitivity was observed between sputum smear positive (73/112, 65.2 %) and negative (30/48, 62.5 %) individuals.ConclusionsThis sandwich ELISA based on an MPT64 antibody aptamer may be useful for the serological diagnosis of PTB, both in sputum smear positive and negative patients.


Journal of Clinical Microbiology | 2014

Diagnostic Accuracy of a Molecular Drug Susceptibility Testing Method for the Antituberculosis Drug Ethambutol: a Systematic Review and Meta-Analysis

Song Cheng; Zhenling Cui; Yuanyuan Li; Zhongyi Hu

ABSTRACT Ethambutol (EMB) is a first-line antituberculosis drug; however, drug resistance to EMB has been increasing. Molecular drug susceptibility testing (DST), based on the embB gene, has recently been used for rapid identification of EMB resistance. The aim of this meta-analysis was to establish the accuracy of molecular assay for detecting drug resistance to EMB. PubMed, Embase, and Web of Science were searched according to a written protocol and explicit study selection criteria. Measures of diagnostic accuracy were pooled using a random effects model. A total of 34 studies were included in the meta-analysis. The respective pooled sensitivities and specificities were 0.57 and 0.93 for PCR-DNA sequencing that targeted the embB 306 codon, 0.76 and 0.89 for PCR-DNA sequencing that targeted the embB 306, 406, and 497 codons, 0.64 and 0.70 for detecting Mycobacterium tuberculosis isolates, 0.55 and 0.78 for detecting M. tuberculosis sputum specimens using the GenoType MTBDRsl test, 0.57 and 0.87 for pyrosequencing, and 0.35 and 0.98 for PCR-restriction fragment length polymorphism. The respective pooled sensitivities and specificities were 0.55 and 0.92 when using a lower EMB concentration as the reference standard, 0.67 and 0.73 when using a higher EMB concentration as the reference standard, and 0.60 and 1.0 when using multiple reference standards. PCR-DNA sequencing using multiple sites of the embB gene as detection targets, including embB 306, 406, and 497, can be a rapid method for preliminarily screening for EMB resistance, but it does not fully replace phenotypic DST. Of the reference DST methods examined, the agreement rates were the best using MGIT 960 for molecular DST and using the proportion method on Middlebrook 7H10 media.


Antimicrobial Agents and Chemotherapy | 2014

Mutations in the embC-embA Intergenic Region Contribute to Mycobacterium tuberculosis Resistance to Ethambutol

Zhenling Cui; Yuanyuan Li; Song Cheng; Hua Yang; Junmei Lu; Zhongyi Hu; Baoxue Ge

ABSTRACT The rapid increase in Mycobacterium tuberculosis resistance to ethambutol (EMB) threatens the diagnosis and treatment of tuberculosis (TB). We investigated the role of mutations in the embC-embA intergenic region (IGR) in EMB-resistant clinical strains from east China. A total of 767 M. tuberculosis clinical strains were collected and analyzed for their drug susceptibility to EMB using the MGIT 960 system and MIC assay, and the embC-embA IGRs of these strains were sequenced. The transcriptional activity of the embC-embA IGR mutations was examined by reporter gene assays in recombinant Mycobacterium smegmatis strains, and the effect of IGR mutations on its binding to EmbR, a transcription regulator of embAB, was analyzed by gel mobility shift assays. Correlation coefficient analysis showed that the embC-embA IGR mutation is associated with EMB resistance. The clinical strains carrying IGR mutations had a much higher level of embA and embB mRNA as well as higher MICs to EMB. IGR mutations had higher transcriptional activity when transformed into M. smegmatis strains. Mutated IGRs bound to EmbR with much higher affinity than wild-type fragments. The sensitivity of molecular drug susceptibility testing (DST) with IGR mutations as an additional marker increased from 65.5% to 73.5%. Mutations of the embC-embA IGR enhance the binding of EmbR to the promoter region of embAB and increase the expression of embAB, thus contributing to EMB resistance. Therefore, identification of IGR mutations as markers of EMB resistance could increase the sensitivity of molecular DST.

Collaboration


Dive into the Zhongyi Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge