Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Ching Lee is active.

Publication


Featured researches published by J. Ching Lee.


Journal of Biological Chemistry | 2001

The Conformation of the Glucocorticoid Receptor AF1/tau1 Domain Induced by Osmolyte Binds Co-regulatory Proteins

Raj Kumar; J. Ching Lee; D. Wayne Bolen; E. Brad Thompson

The activation domains of many transcription factors appear to exist naturally in an unfolded or only partially folded state. This seems to be the case for AF1/tau1, the major transactivation domain of the human glucocorticoid receptor. We show here that in buffers containing the natural osmolyte trimethylamineN-oxide (TMAO), recombinant AF1 folds into more a compact structure, as evidenced by altered fluorescence emission, circular dichroism spectra, and ultracentrifugal analysis. This conformational transition is cooperative, a characteristic of proteins folding to natural structures. The structure resulting from incubation in TMAO causes the peptide to resist proteolysis by trypsin, chymotrypsin, endoproteinase Arg-C and endoproteinase Gluc-C. Ultracentrifugation studies indicate that AF1/tau1 exists as a monomer in aqueous solution and that the presence of TMAO does not lead to oligomerization or aggregation. It has been suggested that recombinant AF1 binds both the ubiquitous coactivator CBP and the TATA box-binding protein, TBP. Interactions with both of these are greatly enhanced in the presence of TMAO. Co-immunoadsorption experiments indicate that in TMAO each of these and the coactivator SRC-1 are found complexed with AF1. These data indicate that TMAO induces a conformation in AF1/tau1 that is important for its interaction with certain co-regulatory proteins.


Journal of Biological Chemistry | 1999

Interdomain Signaling in a Two-domain Fragment of the Human Glucocorticoid Receptor

Raj Kumar; Ilia V. Baskakov; Ganesan Srinivasan; David Wayne Bolen; J. Ching Lee; E. Brad Thompson

Studies of individual domains or subdomains of the proteins making up the nuclear receptor family have stressed their modular nature. Nevertheless, these receptors function as complete proteins. Studies of specific mutations suggest that in the holoreceptors, intramolecular domain-domain interactions are important for complete function, but there is little knowledge concerning these interactions. The important transcriptional transactivation function in the N-terminal part of the glucocorticoid receptor (GR) appears to have little inherent structure. To study its interactions with the DNA binding domain (DBD) of the GR, we have expressed the complete sequence from the N-terminal through the DBD of the human GR. Circular dichroism analyses of this highly purified, multidomain protein show that it has a considerable helical content. We hypothesized that binding of its DBD to the cognate glucocorticoid response element would confer additional structure upon the N-terminal domain. Circular dichroism and fluorescence emission studies suggest that additional helicity as well as tertiary structure occur in the two-domain protein upon DNA binding. In sum, our data suggest that interdomain interactions consequent to DNA binding imparts structure to the portion of the GR that contains a major transactivation domain.


Virology | 2009

Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III

Kiyohiko Matsui; Gregory D. Gromowski; Leike Li; Amy J. Schuh; J. Ching Lee; Alan D. T. Barrett

The disease dengue (DEN) is caused by four genetically and serologically related viruses termed DENV-1, -2, -3, and -4. The DENV envelope (E) protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3. The ED3 contains the DENV type-specific and DENV complex-reactive (epitopes shared by DENV 1-4) antigenic sites. In this study the epitopes recognized by four DENV complex-reactive monoclonal antibodies (MAbs) with neutralizing activity were mapped on the DENV-3 ED3 using a combination of physical and biological techniques. Amino acid residues L306, K308, G381, I387, and W389 were critical for all four MAbs, with residues V305, E309, V310, K325, D382, A384, K386, and R391 being critical for various subsets of the MAbs. A previous study by our group (Gromowski, G.D., Barrett, N.D., Barrett, A.D., 2008. Characterization of dengue complex-specific neutralizing epitopes on the envelope protein domain III of dengue 2 virus. J. Virol 82, 8828-8837) characterized the same panel of MAbs with DENV-2. The location of the DENV complex-reactive antigenic site on the DENV-2 and DENV-3 ED3s is similar; however, the critical residues for binding are not identical. Overall, this indicates that the DENV complex-reactive antigenic site on ED3 may be similar in location, but the surprising result is that DENV 2 and 3 exhibit unique sets of residues defining the energetics of interaction to the same panel of MAbs. These results imply that the amino acid sequences of DENV define a unique interaction network among these residues in spite of the fact that all flavivirus ED3s to date assume the same structural fold.


Molecular Immunology | 2003

Major linear IgE epitopes of mountain cedar pollen allergen Jun a 1 map to the pectate lyase catalytic site.

Terumi Midoro-Horiuti; Venkatarajan S. Mathura; Catherine H. Schein; Werner Braun; Shaoning Yu; Masanao Watanabe; J. Ching Lee; Edward G. Brooks; Randall M. Goldblum

Resolution of the 3D structures and IgE epitopes of allergens may identify common or conserved features of allergens. Jun a 1, the predominant allergen in mountain cedar pollen, was chosen as a model for identifying common structural and functional features among a group of plant allergens. In this study, synthetic, overlapping peptides of Jun a 1 and sera from patients allergic to mountain cedar pollen were used to identify linear epitopes. A 3D model of Jun a 1 was produced using the Bacillus subtiles pectate lyase (PL) as a template and validated with biophysical measurements. This allowed mappings of four IgE binding sites on Jun a 1. Two of the epitopes mapped to turns or loops on the surface of the model structure. The other two epitopes mapped to the beta-sheet region, homologous to the catalytic site of PL. This region of Jun a 1 is highly conserved in the group 1 allergens from other cedar trees as well as microbial PLs. The finding that two out of three major IgE epitopes map to highly conserved catalytic regions of group 1 cedar allergens may help to explain the high degree of cross-reactivity between cedar pollen allergens and might represent a pattern of reactivity common to other allergens with catalytic activity.


Virology | 2010

Mutations of an antibody binding energy hot spot on domain III of the dengue 2 envelope glycoprotein exploited for neutralization escape

Gregory D. Gromowski; John T. Roehrig; Michael S. Diamond; J. Ching Lee; Trevor J. Pitcher; Alan D. T. Barrett

Previous crystallographic studies have identified a total of 11 DENV-2 envelope protein domain III (ED3) residues (K305, F306, K307, V308, V309, K310, I312, Q325, P364, K388, and N390) that interacted, through both side- and main-chain contacts, with the Fab of a dengue virus (DENV) subcomplex-specific neutralizing monoclonal antibody (MAb) 1A1D-2 (Lok et al., 2008). Here, we used DENV-2 recombinant ED3 mutants of the MAb 1A1D-2 structural epitope residues to determine the functional epitope of this MAb. The side-chains of residues K307, K310 and I312 were determined to be functionally critical for MAb binding, and thus constitute a hot spot of binding energy for MAb 1A1D-2 on the DENV-2 ED3. Overall, these findings demonstrate that only a subset of the amino acid residue side-chains within the structural epitope of MAb 1A1D-2 define a functional epitope on the DENV-2 ED3 that is essential for MAb binding and neutralization escape.


Virology | 2012

Mutational analysis of the West Nile virus NS4B protein.

Jason A. Wicker; Melissa C. Whiteman; David W. C. Beasley; C. Todd Davis; Charles E. McGee; J. Ching Lee; Stephen Higgs; Richard M. Kinney; Claire Y.-H. Huang; Alan D. T. Barrett

West Nile virus NS4B is a small hydrophobic nonstructural protein approximately 27 kDa in size whose function is poorly understood. Amino acid substitutions were introduced into the NS4B protein primarily targeting two distinct regions; the N-terminal domain (residues 35 through 60) and the central hydrophobic domain (residues 95 through 120). Only the NS4B P38G substitution was associated with both temperature-sensitive and small-plaque phenotypes. Importantly, this mutation was found to attenuate neuroinvasiveness greater than 10,000,000-fold and lower viremia titers compared to the wild-type NY99 virus in a mouse model. Full genome sequencing of the NS4B P38G mutant virus revealed two unexpected mutations at NS4B T116I and NS3 N480H (P38G/T116I/N480H), however, neither mutation alone was temperature sensitive or attenuated in mice. Following incubation of P38G/T116I/N480H at 41°C, five mutants encoding compensatory substitutions in the NS4B protein exhibited a reduction in the temperature-sensitive phenotype and reversion to a virulent phenotype in the mouse model.


Biophysical Chemistry | 1997

REGULATION OF RABBIT MUSCLE PHOSPHOFRUCTOKINASE BY PHOSPHORYLATION

Guang Zuan Cai; Thomas P. Callaci; Michael A. Luther; J. Ching Lee

Muscle phosphofructokinase is one of the glycolytic enzymes whose partitioning between the particulate and soluble fractions in skeletal muscle is linked to the biological activity of the muscle. The formation of the enzyme-actin complex is apparently regulated by phosphorylation of the enzyme. In order to understand the role of phosphorylation on the regulatory mechanism of phosphofructokinase, the self-association of the phosphorylated and dephosphorylated forms of phosphofructokinase was studied by investigating the sedimentation velocity at pH 7.0 and 23 degrees C in different solvent constituents. The results show that both the phosphorylated and dephosphorylated forms of the enzyme exhibit the same mechanism of assembly. The effects of allosteric effectors are dependent on the phosphorylation state of the enzyme. The presence of 0.2 mM fructose-6-phosphate, one of the two substrates, leads to a significant enhancement in the formation of octomers without altering the equilibrium constant for tetramerization for either phosphorylated or dephosphorylated enzyme. The presence of 10 mM citrate, an allosteric inhibitor, leads to the formation of a significant amount of dimer, an inactive form of the enzyme. Citrate decreases the propensities of the dephosphorylated and phosphorylated forms of the enzyme to tetramerize 3000 times and 100 times, respectively. Based on the mode of subunit assembly, bimodal sedimentation velocity profiles can be obtained by simulation. Furthermore, simulation showed that the seemingly very different profiles reported in the literature can be accounted for by various combinations of equilibrium constants. In summary, this study showed that the propensity of subunit assembly is affected differentially by specific metabolites and the phosphorylation state of phosphofructokinase.


Biophysical Chemistry | 2003

Effects of metabolites on the structural dynamics of rabbit muscle pyruvate kinase

Shaoning Yu; Lucy Lee; J. Ching Lee

The activity of rabbit muscle pyruvate kinase (PK) is regulated by metabolites. Besides requiring the presence of its substrates, PEP and ADP, the enzyme requires Mg(2+) and K(+) for activity. PK is allosterically inhibited by Phe for activity. The presence of PEP or Phe has opposing effects on the hydrodynamic properties of the enzyme without an apparent change in secondary structure. In this study, the structural perturbation induced by ligand binding was investigated by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, the structural dynamics of PK was probed by H/D exchange monitored by FT-IR. Substrates and activating metal ions induce PK to assume a more dynamic structure while Phe exerts an opposite effect. In all cases there is no significant interconversion of secondary structures. PEP is the most efficient ligand in inducing a change in the microenvironments of both helices and sheets so much so that they can be detected spectroscopically as separate bands. These results provide the first evidence for a differential effect of ligand binding on the dynamics of structural elements in PK. Furthermore, the data support the model that allosteric regulation of PK is the consequence of perturbation of the distribution of an ensemble of states in which the observed change in hydrodynamic properties represent the two extreme end states.


Journal of Biological Chemistry | 1997

A 21-kDa C-terminal Fragment of Protein-disulfide Isomerase has Isomerase, Chaperone, and Anti-chaperone Activities

Alberto Puig; Todd P. Primm; Rajendran Surendran; J. Ching Lee; Kevin D. Ballard; Ralph S. Orkiszewski; Vladimir L. Makarov; Hiram F. Gilbert

A catalyst of disulfide formation and isomerization during protein folding, protein-disulfide isomerase (PDI) has two catalytic sites housed in two domains homologous to thioredoxin, one near the N terminus and the other near the C terminus. The thioredoxin domains, by themselves, can catalyze disulfide formation, but they are unable to catalyze disulfide isomerizations (Darby, N. J. and Creighton, T. E. (1995) Biochemistry34, 11725–11735). A 21-kDa, C-terminal fragment of PDI (amino acids 308–491), termed weePDI, comprises the C-terminal third of the molecule. The k cat for ribonuclease oxidative folding by weePDI is 0.26 ± 0.02 min−1, 3-fold lower than the wild-type enzyme but indistinguishable from the activity of a full-length mutant of PDI in which both active site cysteines of the N-terminal thioredoxin domain have been mutated to serine. Eliminating the ability ofweePDI to escape easily from covalent complexes with substrate by mutating the active site cysteine nearer the C terminus to serine has a large effect on the isomerase activity ofweePDI compared with its effect on the full-length enzyme.weePDI also displays chaperone and anti-chaperone activity characteristic of the full-length molecule. As isolated,weePDI is a disulfide-linked dimer in which the single cysteine (Cys-326) outside active site cross-links twoweePDI monomers. The presence of the intermolecular disulfide decreases the activity by more than 2-fold. The results imply that the functions of the core thioredoxin domains of PDI and other members of the thioredoxin superfamily might be modified quite easily by the addition of relatively small accessory domains.


Journal of Biological Chemistry | 1998

Interactive and Dominant Effects of Residues 128 and 141 on Cyclic Nucleotide and DNA Bindings in Escherichia coli cAMP Receptor Protein

Xiaodong Cheng; J. Ching Lee

The molecular events in the cAMP-induced allosteric activation of cAMP receptor protein (CRP) involve interfacial communications between subunits and domains. However, the roles of intersubunit and interdomain interactions in defining the selectivity of cAMP against other cyclic nucleotides and cooperativity in ligand binding are still not known. Natural occurring CRP mutants with different phenotypes were employed to address these issues. Thermodynamic analyses of subunit association, protein stability, and cAMP and DNA binding as well as conformational studies of the mutants and wild-type CRPs lead to an identification of the apparently dominant roles of residues 128 and 141 in the cAMP-modulated DNA binding activity of CRP. Serine 128 and the C-helix were implicated as playing a critical role in modulating negative cooperativity of cyclic nucleotide binding. A correlation was established between a weak affinity for subunit assembly and the relaxation of cyclic nucleotide selectivity in the G141Q and S128A/G141Q mutants. These results imply that intersubunit interaction is important for cyclic nucleotide discrimination in CRP. The double mutant S128A/G141Q, constructed from two single mutations of S128A and G141Q, which exhibit opposite phenotypic characteristics of CRP− and CRP*, respectively, assumes a CRP* phenotype and has biochemical properties similar to those of the G141Q mutant. These observations suggest that mutation G141Q exerts a dominant effect over mutation S128A and that the subunit realignment induced by the G141Q mutation can override the local structural disruption created by mutation S128A.

Collaboration


Dive into the J. Ching Lee's collaboration.

Top Co-Authors

Avatar

Xiaodong Cheng

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Alan D. T. Barrett

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Shaoning Yu

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Petr Herman

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sankar Mitra

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Shwu Hwa Lin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

David W. C. Beasley

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jianquan Li

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mark A. White

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge