Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where dong Xiao is active.

Publication


Featured researches published by dong Xiao.


Biochemical and Biophysical Research Communications | 2003

The SARS-CoV S glycoprotein: expression and functional characterization

Xiaodong Xiao; Samitabh Chakraborti; Anthony S Dimitrov; Kosi Gramatikoff; Dimiter S. Dimitrov

Abstract We have cloned, expressed, and characterized the full-length and various soluble fragments of the SARS-CoV (Tor2 isolate) S glycoprotein. Cells expressing S fused with receptor-expressing cells at neutral pH suggesting that the recombinant glycoprotein is functional, its membrane fusogenic activity does not require other viral proteins, and that low pH is not required for triggering membrane fusion; fusion was not observed at low receptor concentrations. S and its soluble ectodomain, Se, were not cleaved to any significant degree. They ran at about 180–200kDa in SDS gels suggesting post-translational modifications as predicted by previous computer analysis and observed for other coronaviruses. Fragments containing the N-terminal amino acid residues 17–537 and 272–537 but not 17–276 bound specifically to Vero E6 cells and purified soluble receptor, ACE2, recently identified by M. Farzan and co-workers [Nature 426 (2003) 450–454]. Together with data for inhibition of binding by antibodies developed against peptides from S, these findings suggest that the receptor-binding domain is located between amino acid residues 303 and 537. These results also confirm that ACE2 is a functional receptor for the SARS virus and may help in the elucidation of the mechanisms of SARS-CoV entry and in the development of vaccine immunogens and entry inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120–CD4–CCR5 complexes

Maxime Moulard; Sanjay Phogat; Yuuei Shu; Aran Frank Labrijn; Xiaodong Xiao; James M. Binley; Mei-Yun Zhang; Igor A. Sidorov; Christopher C. Broder; James Robinson; Paul W. H. I. Parren; Dennis R. Burton; Dimiter S. Dimitrov

HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor, typically CCR5. Here we provide evidence that purified gp120JR-FL–CD4–CCR5 complexes exhibit an epitope recognized by a Fab (X5) obtained by selection of a phage display library from a seropositive donor with a relatively high broadly neutralizing serum antibody titer against an immobilized form of the trimolecular complex. X5 bound with high (nM) affinity to a variety of Envs, including primary isolates from different clades and Envs with deleted variable loops (V1, -2, -3). Its binding was significantly increased by CD4 and slightly enhanced by CCR5. X5 inhibited infection of peripheral blood mononuclear cells by a selection of representative HIV-1 primary isolates from clades A, B, C, D, E, F, and G with an efficiency comparable to that of the broadly neutralizing antibody IgG1 b12. Furthermore, X5 inhibited cell fusion mediated by Envs from R5, X4, and R5X4 viruses. Of the five broadly cross-reactive HIV-1-neutralizing human monoclonal antibodies known to date, X5 is the only one that exhibits increased binding to gp120 complexed with receptors. These findings suggest that X5 could possibly be used as entry inhibitor alone or in combination with other antiretroviral drugs for the treatment of HIV-1-infected individuals, provide evidence for the existence of conserved receptor-inducible gp120 epitopes that can serve as targets for potent broadly cross-reactive neutralizing antibodies in HIV-1-infected patients, and have important conceptual and practical implications for the development of vaccines and inhibitors.


Biochemical and Biophysical Research Communications | 2009

Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens

Xiaodong Xiao; Weizao Chen; Yang Feng; Zhongyu Zhu; Ponraj Prabakaran; Yanping Wang; Mei-Yun Zhang; Nancy S. Longo; Dimiter S. Dimitrov

Abstract Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1 has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of such antibodies by using “holes” (absence or very weak binding to these epitopes of germline antibodies that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B cell receptor (BCR) repertoire. To begin to test this hypothesis we have designed germline-like antibodies corresponding most closely to b12, 2G12, and 2F5 as well as to X5, m44, and m46 which are cross-reactive but with relatively modest neutralizing activity as natively occurring antibodies due to size and/or other effects. The germline-like X5, m44, and m46 bound with relatively high affinity to all tested Envs. In contrast, germline-like b12, 2G12, and 2F5 lacked measurable binding to Envs in an ELISA assay although the corresponding mature antibodies did. These results provide initial evidence that Env structures containing conserved vulnerable epitopes may not initiate humoral responses by binding to germline antibodies. Even if such responses are initiated by very weak binding undetectable in our assay it is likely that they will be outcompeted by responses to structures containing the epitopes of X5, m44, m46, and other antibodies that bind germline BCRs with much higher affinity/avidity. This hypothesis, if further supported by data, could contribute to our understanding of how HIV-1 evades immune responses and offer new concepts for design of effective vaccine immunogens.


Journal of Virology | 2000

Glycosphingolipids Promote Entry of a Broad Range of Human Immunodeficiency Virus Type 1 Isolates into Cell Lines Expressing CD4, CXCR4, and/or CCR5

Peter Hug; Han-Ming Joseph Lin; Thomas Korte; Xiaodong Xiao; Dimiter S. Dimitrov; Ji Ming Wang; Anu Puri; Robert Blumenthal

ABSTRACT Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca2+ mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.


Journal of Virology | 2006

Potent Neutralization of Hendra and Nipah Viruses by Human Monoclonal Antibodies

Zhongyu Zhu; Antony S. Dimitrov; Katharine N. Bossart; Gary Crameri; Kimberly A. Bishop; Vidita Choudhry; Bruce A. Mungall; Yan-Ru Feng; Anil Choudhary; Mei-Yun Zhang; Yang Feng; Lin-Fa Wang; Xiaodong Xiao; Bryan T. Eaton; Christopher C. Broder; Dimiter S. Dimitrov

ABSTRACT Hendra virus (HeV) and Nipah virus (NiV) are closely related emerging viruses comprising the Henipavirus genus of the Paramyxovirinae. Each has a broad species tropism and can cause disease with high mortality in both animal and human hosts. These viruses infect cells by a pH-independent membrane fusion event mediated by their attachment (G) and fusion (F) envelope glycoproteins (Envs). Seven Fabs, m101 to -7, were selected for their significant binding to a soluble form of Hendra G (sG) which was used as the antigen for panning of a large naïve human antibody library. The selected Fabs inhibited, to various degrees, cell fusion mediated by the HeV or NiV Envs and virus infection. The conversion of the most potent neutralizer of infectious HeV, Fab m101, to immunoglobulin G1 (IgG1) significantly increased its cell fusion inhibitory activity: the 50% inhibitory concentration was decreased more than 10-fold to approximately 1 μg/ml. The IgG1 m101 was also exceptionally potent in neutralizing infectious HeV; complete (100%) neutralization was achieved with 12.5 μg/ml, and 98% neutralization required only 1.6 μg/ml. The inhibition of fusion and infection correlated with binding of the Fabs to full-length G as measured by immunoprecipitation and less with binding to sG as measured by enzyme-linked immunosorbent assay and Biacore. m101 and m102 competed with the ephrin-B2, which we recently identified as a functional receptor for both HeV and NiV, indicating a possible mechanism of neutralization by these antibodies. The m101, m102, and m103 antibodies competed with each other, suggesting that they bind to overlapping epitopes which are distinct from the epitopes of m106 and m107. In an initial attempt to localize the epitopes of m101 and m102, we measured their binding to a panel of 11 G alanine-scanning mutants and identified two mutants, P185A and Q191 K192A, which significantly decreased binding to m101 and one, G183, which decreased binding of m102 to G. These results suggest that m101 to -7 are specific for HeV or NiV or both and exhibit various neutralizing activities; they are the first human monoclonal antibodies identified against these viruses and could be used for treatment, prophylaxis, and diagnosis and as research reagents and could aid in the development of vaccines.


Journal of Virology | 2004

Identification and Characterization of a New Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Human Monoclonal Antibody

Mei-Yun Zhang; Xiaodong Xiao; Igor A. Sidorov; Vidita Choudhry; Fatim Cham; Peng Fei Zhang; Peter Bouma; Michael B. Zwick; Anil Choudhary; David C. Montefiori; Christopher C. Broder; Dennis R. Burton; Gerald V. Quinnan; Dimiter S. Dimitrov

ABSTRACT The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.


Molecular Cancer Therapeutics | 2006

Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function

Yang Feng; Zhongyu Zhu; Xiaodong Xiao; Vidita Choudhry; J. Carl Barrett; Dimiter S. Dimitrov

The insulin-like growth factor (IGF) system plays an important role in a variety of physiologic processes and in diseases such as cancer. Although the role of the IGF system in cancer has been recognized many years ago, components of the system have only recently been targeted and shown to affect cell transformation, proliferation, survival, motility, and migration in tissue cultures and in mouse models of cancer. We have been hypothesizing that targeting IGF-II in addition to blocking its interaction with the IGF receptor type I (IGF-IR) would also allow to block that portion of the signal transduction through the insulin receptor that is due to its interaction with IGF-II. Lowering its level may also not induce up-regulation of its production as for IGF-I. Finally, targeting a diffusable ligand as IGF-II may not require penetration of the antibody inside tumors but could shift the equilibrium to IGF-II complexed with antibody so the ligand concentration would decrease in the tumor environment without the need for the antibody to penetrate the tumor. Here, we describe the identification and characterization of three novel anti-IGF-II fully human monoclonal antibodies. They bound with high (subnanomolar) affinity to IGF-II, did not cross-react with IGF-I and insulin, and potently inhibited signal transduction mediated by the IGF-IR interaction with IGF-II. The most potent neutralizer, IgG1 m610, inhibited phosphorylation of the IGF-IR and the insulin receptor, as well as phosphorylation of the downstream kinases Akt and mitogen-activated protein kinase with an IC50 of the order of 1 nmol/L at IGF-II concentration of 10 nmol/L. It also inhibited growth of the prostate cancer cell line DU145 and migration of the breast cancer line cells MCF-7. These results indicate an immunotherapeutic potential of IgG1 m610 likely in combination with other antibodies and anticancer drugs but only further experiments in mouse models of cancer and human clinical trials could evaluate this possibility. [Mol Cancer Ther 2006;5(1):114–20]


Journal of Biological Chemistry | 2006

Structure of Severe Acute Respiratory Syndrome Coronavirus Receptor-binding Domain Complexed with Neutralizing Antibody

Ponraj Prabakaran; Jianhua Gan; Yang Feng; Zhongyu Zhu; Vidita Choudhry; Xiaodong Xiao; Xinhua Ji; Dimiter S. Dimitrov

The severe acute respiratory syndrome coronavirus (SARS-CoV, or SCV), which caused a world-wide epidemic in 2002 and 2003, binds to a receptor, angiotensin-converting enzyme 2 (ACE2), through the receptor-binding domain (RBD) of its envelope (spike, S) glycoprotein. The RBD is very immunogenic; it is a major SCV neutralization determinant and can elicit potent neutralizing antibodies capable of out-competing ACE2. However, the structural basis of RBD immunogenicity, RBD-mediated neutralization, and the role of RBD in entry steps following its binding to ACE2 have not been elucidated. By mimicking immune responses with the use of RBD as an antigen to screen a large human antibody library derived from healthy volunteers, we identified a novel potent cross-reactive SCV-neutralizing monoclonal antibody, m396, which competes with ACE2 for binding to RBD, and determined the crystal structure of the RBD-antibody complex at 2.3-Å resolution. The antibody-bound RBD structure is completely defined, revealing two previously unresolved segments (residues 376–381 and 503–512) and a new disulfide bond (between residues 378 and 511). Interestingly, the overall structure of the m396-bound RBD is not significantly different from that of the ACE2-bound RBD. The antibody epitope is dominated by a 10-residue-long protruding β6–β7 loop with two putative ACE2-binding hotspot residues (Ile-489 and Tyr-491). These results provide a structural rationale for the function of a major determinant of SCV immunogenicity and neutralization, the development of SCV therapeutics based on the antibody paratope and epitope, and a retrovaccinology approach for the design of anti-SCV vaccines. The available structural information indicates that the SCV entry may not be mediated by ACE2-induced conformational changes in the RBD but may involve other conformational changes or/and yet to be identified coreceptors.


Biochemical and Biophysical Research Communications | 2004

A model of the ACE2 structure and function as a SARS-CoV receptor

Ponraj Prabakaran; Xiaodong Xiao; Dimiter S. Dimitrov

Abstract The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin–angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5Å. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.


Biochemical and Biophysical Research Communications | 2009

A large library based on a novel (CH2) scaffold: identification of HIV-1 inhibitors

Xiaodong Xiao; Yang Feng; Bang K. Vu; Rieko Ishima; Dimiter S. Dimitrov

Isolated immunoglobulin CH2 domains were proposed as scaffolds for selection of binders with potential effector functions. We tested the feasibility of this approach by constructing a large (size 5 x 10(10)) library where all amino acids in two loops (BC and FG) were mutated to four residues (Y, A, D, or S). Three binders were selected from this library by panning against a gp120-CD4 complex. The strongest binder, m1a1, recognized specifically a highly conserved CD4i epitope and inhibited to various extents seven out of nine HIV-1 isolates from different clades. The loop BC and the conformational state of the scaffold are critical for its binding. These results provide a proof of concept for the potential of CH2 as a scaffold for construction of libraries containing potentially useful binders. The newly identified HIV-1 inhibitors could be further improved to candidate therapeutics and/or used as research reagents for exploration of conserved gp120 structures.

Collaboration


Dive into the dong Xiao's collaboration.

Top Co-Authors

Avatar

Dimiter S. Dimitrov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongyu Zhu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yang Feng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yan-Ru Feng

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Igor A. Sidorov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mei-Yun Zhang

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Ponraj Prabakaran

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samitabh Chakraborti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tzanko S. Stantchev

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge