Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaodong Zou is active.

Publication


Featured researches published by Xiaodong Zou.


Nature | 2009

The ITQ-37 mesoporous chiral zeolite

Junliang Sun; Charlotte Bonneau; Ángel Cantín; Avelino Corma; María J. Díaz-Cabañas; Manuel Moliner; Daliang Zhang; Mingrun Li; Xiaodong Zou

The synthesis of crystalline molecular sieves with pore dimensions that fill the gap between microporous and mesoporous materials is a matter of fundamental and industrial interest. The preparation of zeolitic materials with extralarge pores and chiral frameworks would permit many new applications. Two important steps in this direction include the synthesis of ITQ-33, a stable zeolite with 18 × 10 × 10 ring windows, and the synthesis of SU-32, which has an intrinsically chiral zeolite structure and where each crystal exhibits only one handedness. Here we present a germanosilicate zeolite (ITQ-37) with extralarge 30-ring windows. Its structure was determined by combining selected area electron diffraction (SAED) and powder X-ray diffraction (PXRD) in a charge-flipping algorithm. The framework follows the SrSi2 (srs) minimal net and forms two unique cavities, each of which is connected to three other cavities to form a gyroidal channel system. These cavities comprise the enantiomorphous srs net of the framework. ITQ-37 is the first chiral zeolite with one single gyroidal channel. It has the lowest framework density (10.3 T atoms per 1,000 Å3) of all existing 4-coordinated crystalline oxide frameworks, and the pore volume of the corresponding silica polymorph would be 0.38 cm3 g-1.


Nature | 2005

A mesoporous germanium oxide with crystalline pore walls and its chiral derivative

Xiaodong Zou; Tony Conradsson; Miia Klingstedt; Mike S. Dadachov; M. O'Keeffe

Microporous oxides are inorganic materials with wide applications in separations, ion exchange and catalysis. In such materials, an important determinant of pore size is the number of M (where M = Si, Ge and so on) atoms in the rings delineating the channels. The important faujasite structure exhibits 12-ring structures while those of zeolites, germanates and other materials can be much larger. Recent attention has focused on mesoporous materials with larger pores of nanometre scale; however, with the exception of an inorganic–organic hybrid, these have amorphous pore walls, limiting many applications. Chiral porous oxides are particularly desirable for enantioselective sorption and catalysis. However, they are very rare in microporous and mesoporous materials. Here we describe a mesoporous germanium oxide, SU-M, with gyroidal channels separated by crystalline walls that lie about the G (gyroid) minimal surface as in the mesoporous MCM-48 (ref. 9). It has the largest primitive cell and lowest framework density of any inorganic material and channels that are defined by 30-rings. One of the two gyroidal channel systems of SU-M can be filled with additional oxide, resulting in a mesoporous crystal (SU-MB) with chiral channels.


Journal of the American Chemical Society | 2016

One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery.

Haoquan Zheng; Yuning Zhang; Leifeng Liu; Wei Wan; Peng Guo; Andreas M. Nyström; Xiaodong Zou

Many medical and chemical applications require target molecules to be delivered in a controlled manner at precise locations. Metal-organic frameworks (MOFs) have high porosity, large surface area, and tunable functionality and are promising carriers for such purposes. Current approaches for incorporating target molecules are based on multistep postfunctionalization. Here, we report a novel approach that combines MOF synthesis and molecule encapsulation in a one-pot process. We demonstrate that large drug and dye molecules can be encapsulated in zeolitic imidazolate framework (ZIF) crystals. The molecules are homogeneously distributed within the crystals, and their loadings can be tuned. We show that ZIF-8 crystals loaded with the anticancer drug doxorubicin (DOX) are efficient drug delivery vehicles in cancer therapy using pH-responsive release. Their efficacy on breast cancer cell lines is higher than that of free DOX. Our one-pot process opens new possibilities to construct multifunctional delivery systems for a wide range of applications.


Journal of the American Chemical Society | 2012

ZSM-5 Zeolite Single Crystals with b-Axis-Aligned Mesoporous Channels as an Efficient Catalyst for Conversion of Bulky Organic Molecules

Fujian Liu; Tom Willhammar; Liang Wang; Longfeng Zhu; Qi Sun; Xiangju Meng; Wilder Carrillo-Cabrera; Xiaodong Zou; Feng-Shou Xiao

The relatively small and sole micropores in zeolite catalysts strongly influence the mass transfer and catalytic conversion of bulky molecules. We report here aluminosilicate zeolite ZSM-5 single crystals with b-axis-aligned mesopores, synthesized using a designed cationicamphiphilic copolymer as a mesoscale template. This sample exhibits excellent hydrothermal stability. The orientation of the mesopores was confirmed by scanning and transmission electron microscopy. More importantly, the b-axis-aligned mesoporous ZSM-5 shows much higher catalytic activities for bulky substrate conversion than conventional ZSM-5 and ZSM-5 with randomly oriented mesopores. The combination of good hydrothermal stability with high activities is important for design of novel zeolite catalysts. The b-axis-aligned mesoporous ZSM-5 reported here shows great potential for industrial applications.


Science | 2007

Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping

Christian Baerlocher; Fabian Gramm; Lars Massüger; Lynne B. McCusker; Zhanbing He; Sven Hovmöller; Xiaodong Zou

Despite substantial advances in crystal structure determination methodology for polycrystalline materials, some problems have remained intractable. A case in point is the zeolite catalyst IM-5, whose structure has eluded determination for almost 10 years. Here we present a charge-flipping structure-solution algorithm, extended to facilitate the combined use of powder diffraction and electron microscopy data. With this algorithm, we have elucidated the complex structure of IM-5, with 24 topologically distinct silicon atoms and an unusual two-dimensional medium-pore channel system. This powerful approach to structure solution can be applied without modification to any type of polycrystalline material (e.g., catalysts, ceramics, pharmaceuticals, complex metal alloys) and is therefore pertinent to a diverse range of scientific disciplines.


Nature Communications | 2014

Correlated defect nanoregions in a metal–organic framework

Matthew J. Cliffe; Wei Wan; Xiaodong Zou; Philip A. Chater; Annette K. Kleppe; Matthew G. Tucker; H. Wilhelm; Nicholas P. Funnell; François-Xavier Coudert; Andrew L. Goodwin

Throughout much of condensed matter science, correlated disorder is key to material function. While structural and compositional defects are known to exist within a variety of metal–organic frameworks, the prevailing understanding is that these defects are only ever included in a random manner. Here we show—using a combination of diffuse scattering, electron microscopy, anomalous X-ray scattering, and pair distribution function measurements—that correlations between defects can in fact be introduced and controlled within a hafnium terephthalate metal–organic framework. The nanoscale defect structures that emerge are an analogue of correlated Schottky vacancies in rocksalt-structured transition metal monoxides and have implications for storage, transport, optical and mechanical responses. Our results suggest how the diffraction behaviour of some metal–organic frameworks might be reinterpreted, and establish a strategy of exploiting correlated nanoscale disorder as a targetable and desirable motif in metal–organic framework design.


Nature Communications | 2015

Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

Dawei Feng; Tian-Fu Liu; Jie Su; Mathieu Bosch; Zhangwen Wei; Wei Wan; Daqiang Yuan; Ying-Pin Chen; Xuan Wang; Kecheng Wang; Xizhen Lian; Zhi-Yuan Gu; Jihye Park; Xiaodong Zou; Hong-Cai Zhou

Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.


Nature Materials | 2008

A zeolite family with chiral and achiral structures built from the same building layer

Liqiu Tang; Lei Shi; Charlotte Bonneau; Junliang Sun; Huijuan Yue; Arto Ojuva; Bao Lin Lee; Mikael Kritikos; Robert G. Bell; Zoltán Bacsik; J. Mink; Xiaodong Zou

Porosity and chirality are two of the most important properties for materials in the chemical and pharmaceutical industry. Inorganic microporous materials such as zeolites have been widely used in ion-exchange, selective sorption/separation and catalytic processes. The pore size and shape in zeolites play important roles for specific applications. Chiral inorganic microporous materials are particularly desirable with respect to their possible use in enantioselective sorption, separation and catalysis. At present, among the 179 zeolite framework types reported, only three exhibit chiral frameworks. Synthesizing enantiopure, porous tetrahedral framework structures represents a great challenge for chemists. Here, we report the silicogermanates SU-32 (polymorph A), SU-15 (polymorph B) (SU, Stockholm University) and a hypothetical polymorph C, all built by different stacking of a novel building layer. Whereas polymorphs B and C are achiral, each crystal of polymorph A exhibits only one hand and has an intrinsically chiral zeolite structure. SU-15 and SU-32 are thermally stable on calcination.


Zeitschrift Fur Kristallographie | 2010

Collecting 3D electron diffraction data by the rotation method

Daliang Zhang; Peter Oleynikov; Sven Hovmöller; Xiaodong Zou

Abstract A new method for collecting complete three-dimensional electron diffraction data is described. Diffraction data is collected by combining electron beam tilt at many very small steps, with rotation of the crystal in a few but large steps. A number of practical considerations are discussed, as well as advantages and disadvantages compared to other methods of collecting electron diffraction data.


Journal of the American Chemical Society | 2014

A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs

Kecheng Wang; Dawei Feng; Tian-Fu Liu; Jie Su; Shuai Yuan; Ying-Pin Chen; Mathieu Bosch; Xiaodong Zou; Hong-Cai Zhou

A series of mesoporous metalloporphyrin Fe-MOFs, namely PCN-600(M) (M = Mn, Fe, Co, Ni, Cu), have been synthesized using the preassembled [Fe3O(OOCCH3)6] building block. PCN-600 exhibits a one-dimensional channel as large as 3.1 nm and the highest experimental pore volume of 1.80 cm(3)g(-1) among all the reported porphyrinic MOFs. It also shows very high stability in aqueous solutions with pH values ranging from 2-11 and is to our knowledge the only mesoporous porphyrinic MOF stable under basic aqueous conditions. PCN-600(Fe) has been demonstrated as an effective peroxidase mimic to catalyze the co-oxidation reaction.

Collaboration


Dive into the Xiaodong Zou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wan

Stockholm University

View shared research outputs
Top Co-Authors

Avatar

Jie Su

Stockholm University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge