Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofei Tan is active.

Publication


Featured researches published by Xiaofei Tan.


Chemosphere | 2015

Application of biochar for the removal of pollutants from aqueous solutions

Xiaofei Tan; Yunguo Liu; Guangming Zeng; Xin Wang; Xinjiang Hu; Yanling Gu; Yang Zh

In recent years, many studies have been devoted to investigate the application of biochar for pollutants removal from aqueous solutions. Biochar exhibits a great potential to efficiently tackle water contaminants considering the wide availability of feedstock, low-cost and favorable physical/chemical surface characteristics. This review provides an overview of biochar production technologies, biochar properties, and recent advances in the removal of heavy metals, organic pollutants and other inorganic pollutants using biochar. Experimental studies related to the adsorption behaviors of biochar toward various contaminants, key affecting factors and the underlying mechanisms proposed to explain the adsorption behaviors, have been comprehensively reviewed. Furthermore, research gaps and uncertainties that exist in the use of biochar as an adsorbent are identified. Further research needs for biochar and potential areas for future application of biochars are also proposed.


Bioresource Technology | 2016

Biochar-based nano-composites for the decontamination of wastewater: A review.

Xiaofei Tan; Yunguo Liu; Yanling Gu; Yan Xu; Guangming Zeng; Xinjiang Hu; Shaobo Liu; Xin Wang; Si-mian Liu; Jiang Li

Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.


Bioresource Technology | 2017

Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage

Xiaofei Tan; Shaobo Liu; Yunguo Liu; Yanling Gu; Guangming Zeng; Xinjiang Hu; Xin Wang; Shaoheng Liu; Luhua Jiang

There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar.


RSC Advances | 2015

Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution

Chao Gan; Yunguo Liu; Xiaofei Tan; Shufan Wang; Guangming Zeng; Bohong Zheng; Ting-ting Li; Zhengjiang Jiang; Wei Liu

A new synthesis method was developed to produce zinc–biochar nanocomposites from sugarcane bagasse. The modified biochar maintained 1.2 to 2.0 times higher removal efficiency than that of pristine biochar. FTIR, XPS, BET and SEM were used to analyse the physical and chemical properties of the composite adsorbent. Batch sorption experiments were carried out to investigate the adsorption behavior of Cr(VI) by zinc–biochar. Experimental data were better fitted by a pseudo-second-order kinetics equation and the Freundlich isotherm model. Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The maximum adsorption of the modified biochar was observed at pH 2.0 with the sorption capacity of 102.66 mg g−1. The adsorbed zinc–biochar could be effectively regenerated by 0.5 mol L−1 NaOH solution and the adsorption ability decreased from 84.16 to 59.75 mg g−1 in the sixth cycle. In conclusion, the porous zinc–biochar showed great potential advantages in the removal of Cr(VI) from wastewater.


Bioresource Technology | 2016

Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures

Lu Zhou; Yunguo Liu; Shaobo Liu; Yicheng Yin; Guangming Zeng; Xiaofei Tan; Xi Hu; Xinjiang Hu; Luhua Jiang; Yang Ding; Shaoheng Liu; Xixian Huang

To investigate the relationship between Cr(VI) adsorption mechanisms and physio-chemical properties of biochar, ramie residues were oxygen-limited pyrolyzed under temperature varying from 300 to 600°C. Batch adsorption experiments indicated that higher pyrolysis temperature limits Cr(VI) sorption in terms of capacity and affinity due to a higher aromatic structure and fewer polar functional groups in biochar. Both electrostatic (physical) and ionic (chemical) interactions were involved in the Cr(VI) removal. For low-temperature biochar, the simple physical adsorption was limited and the significant improvement in Cr(VI) sorption was attributed to abundant carboxyl and hydroxyl groups. The adsorption-reduction mechanisms could be concluded that Cr(VI) ions were electrostatically attracted by the positively charged biochar surface and reduced to Cr(III), and then the converted Cr(III) was retained or discharged into the solution. The study demonstrates ramie residues can be converted into biochar as a low-cost and effective sorbent for Cr(VI) removal.


RSC Advances | 2016

Effective removal of Cr(VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles

Xixian Huang; Yunguo Liu; Shaobo Liu; Xiaofei Tan; Yang Ding; Guangming Zeng; Yaoyu Zhou; Mingming Zhang; Shufan Wang; Bohong Zheng

In this work, beta-cyclodextrin–chitosan modified walnut shell biochars (β-CCWB) were synthesized as a low-cost adsorbent for the removal of heavy metal Cr(VI) from aqueous solutions. Batch sorption experiments were carried out to investigate the adsorption characteristic of β-CCWB. The experimental data fitted a pseudo-second order equation and Freundlich isotherm model, and the optimum adsorption of the modified biochar was observed at pH 2.0 with an adsorption capacity of 206 mg g−1. Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic. The removal efficiency of Cr(VI) by β-CCWB (about 93%) was higher than that by the pristine biochar (about 27%). Characteristic analysis indicated that amino and carboxyl groups were the major functional groups for Cr(VI) sorption, and implied that the electrostatic attraction of Cr(VI) to the positively charged biochar surface, reduction of Cr(VI) to Cr(III) ions and the complexation between Cr(III) ions and β-CCWB functional groups were responsible for Cr(VI) removal mechanism in this research. Furthermore, the environmentally friendly and low-cost β-CCWB could be applied as a potential effective adsorbent to remediate Cr(VI) contamination from aqueous solution.


Bioresource Technology | 2017

Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review

Shaoheng Liu; Guangming Zeng; Qiuya Niu; Yang Liu; Lu Zhou; Luhua Jiang; Xiaofei Tan; Piao Xu; Chen Zhang; Min Cheng

In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.


Agronomy for Sustainable Development | 2016

Biochar to improve soil fertility. A review

Yang Ding; Yunguo Liu; Shaobo Liu; Zhongwu Li; Xiaofei Tan; Xixian Huang; Guangming Zeng; Lu Zhou; Bohong Zheng

Soil mineral depletion is a major issue due mainly to soil erosion and nutrient leaching. The addition of biochar is a solution because biochar has been shown to improve soil fertility, to promote plant growth, to increase crop yield, and to reduce contaminations. We review here biochar potential to improve soil fertility. The main properties of biochar are the following: high surface area with many functional groups, high nutrient content, and slow-release fertilizer. We discuss the influence of feedstock, pyrolysis temperature, pH, application rates, and soil types. We review the mechanisms ruling the adsorption of nutrients by biochar.


RSC Advances | 2015

Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(VI) from aqueous solution

Mingming Zhang; Yunguo Liu; Ting-ting Li; Weihua Xu; Bohong Zheng; Xiaofei Tan; Hui Wang; Yi-ming Guo; Fang-ying Guo; Shufan Wang

In this research, chitosan modification of magnetic biochar (CMB) was successfully prepared for effective removal of Cr(VI). Moreover, this study highlighted that the conversion of Eichhornia crassipes into biochar was a promising method for improved management of this highly problematic invasive species. The sorption kinetics, isotherms, thermodynamics, the effects of pH, and background electrolyte on the sorption process were investigated. The results indicated that CMB adsorbed more Cr(VI) (120 mg g−1) than that of pristine biochar (30 mg g−1). The sorption data could be well illustrated by pseudo-second-order and Langmuir models. Furthermore, thermodynamic parameters revealed that the sorption reaction was an endothermic and spontaneous process. The adsorption of Cr(VI) was influenced by solution pH and the maximum sorption capacity was achieved at pH 2. The background electrolyte PO43− and SO42− restricted the Cr(VI) sorption. These results are significant for exploring and optimizing the removal of metal ions by the CMB composite.


RSC Advances | 2016

Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism

Yang Ding; Yunguo Liu; Shaobo Liu; Zhongwu Li; Xiaofei Tan; Xixian Huang; Guangming Zeng; Yaoyu Zhou; Bohong Zheng; Xiaoxi Cai

Three biochars converted from water hyacinth biomass at 300, 450, and 600 °C were used to investigate the adsorption properties of Cd2+ and Pb2+. In addition, the competitive adsorption mechanisms between Cd2+ and Pb2+ were also conducted. Adsorption kinetics and isotherms indicated that the maximum adsorption capacity of Pb2+ was larger than that of Cd2+, and the adsorption process in the mixed solutions of two heavy metals (Cd2+ and Pb2+) was more favorable for Pb2+. Further investigation about the characterization of biochars demonstrated that cation exchange, surface complexation, cation–π interaction and precipitation were the main mechanisms responsible for the heavy metal removal. In this study, competitive adsorption may also be explained by these mechanisms. These results are useful for the application of biochars in selective adsorption and in practical wastewater treatment.

Collaboration


Dive into the Xiaofei Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaobo Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bohong Zheng

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge