Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoguo Jiao is active.

Publication


Featured researches published by Xiaoguo Jiao.


Journal of Economic Entomology | 2011

Further Spread of and Domination by Bemisia tabaci (Hemiptera: Aleyrodidae) Biotype Q on Field Crops in China

Huipeng Pan; Dong Chu; Daqing Ge; Shaoli Wang; Qingjun Wu; Wen Xie; Xiaoguo Jiao; Baiming Liu; Xin Yang; Nina Yang; Qi Su; Baoyun Xu; Youjun Zhang

ABSTRACT The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), causes severe crop losses to many crops. The worst of these losses are often associated with the invasion and establishment of biotypes B and Q of this pest. Previous research in 2007 showed that biotype Q occurred with other biotypes in most field populations in China. To determine the current status of the biotype composition in the field, an extensive survey covering mainly eastern parts of China was conducted in 2009. Using polymerase chain reaction primers specific for the mitochondrial cytochrome oxidase I of biotypes B and Q and gene sequencing, we determined the biotypes composition in 61 whitefly populations and their distribution across 19 provinces in China. Our research revealed that only biotypes B and Q have been found in the field in 2009 in China. Among them, biotype Q was dominant in 44 locations (100.0%) and biotype B was dominant in 17 locations (100.0%). The current survey indicates that biotype Q has rapidly displaced biotype B in most locations in China.


PLOS ONE | 2012

Rapid Spread of Tomato Yellow Leaf Curl Virus in China Is Aided Differentially by Two Invasive Whiteflies

Huipeng Pan; Dong Chu; Wenqian Yan; Qi Su; Baiming Liu; Shaoli Wang; Qingjun Wu; Wen Xie; Xiaoguo Jiao; Rumei Li; Nina Yang; Xin Yang; Baoyun Xu; Judith K. Brown; Xuguo Zhou; Youjun Zhang

Background Tomato yellow leaf curl virus (TYLCV) was introduced into China in 2006, approximately 10 years after the introduction of an invasive whitefly, Bemisia tabaci (Genn.) B biotype. Even so the distribution and prevalence of TYLCV remained limited, and the economic damage was minimal. Following the introduction of Q biotype into China in 2003, the prevalence and spread of TYLCV started to accelerate. This has lead to the hypothesis that the two biotypes might not be equally competent vectors of TYLCV. Methodology/Principal Findings The infection frequency of TYLCV in the field-collected B. tabaci populations was investigated, the acquisition and transmission capability of TYLCV by B and Q biotypes were compared under the laboratory conditions. Analysis of B. tabaci populations from 55 field sites revealed the existence of 12 B and 43 Q biotypes across 18 provinces in China. The acquisition and transmission experiments showed that both B and Q biotypes can acquire and transmit the virus, however, Q biotype demonstrated superior acquisition and transmission capability than its B counterparts. Specifically, Q biotype acquired significantly more viral DNA than the B biotype, and reached the maximum viral load in a substantially shorter period of time. Although TYLCV was shown to be transmitted horizontally by both biotypes, Q biotype exhibited significantly higher viral transmission frequency than B biotype. Vertical transmission result, on the other hand, indicated that TYLCV DNA can be detected in eggs and nymphs, but not in pupae and adults of the first generation progeny. Conclusions/Significance These combined results suggested that the epidemiology of TYLCV was aided differentially by the two invasive whiteflies (B and Q biotypes) through horizontal but not vertical transmission of the virus. This is consistent with the concomitant eruption of TYLCV in tomato fields following the recent rapid invasion of Q biotype whitefly in China.


PLOS ONE | 2012

Factors Affecting Population Dynamics of Maternally Transmitted Endosymbionts in Bemisia tabaci

Huipeng Pan; Xianchun Li; Daqing Ge; Shaoli Wang; Qingjun Wu; Wen Xie; Xiaoguo Jiao; Dong Chu; Baiming Liu; Baoyun Xu; Youjun Zhang

While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae) harbors the primary symbiont (P-symbiont) Portiera, the infection frequencies of the six secondary symbionts (S-symbionts) including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes) field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH), Rickettsia + Cardinium (RC), Hamiltonella + Cardinium (HC) and Rickettsia + Hamiltonella + Cardinium (RHC) varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.


GigaScience | 2017

Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q

Wen Xie; Chunhai Chen; Zezhong Yang; Litao Guo; Xin Yang; Dan Wang; Ming Chen; Jinqun Huang; Yanan Wen; Yang Zeng; Yating Liu; Jixing Xia; Lixia Tian; Hongying Cui; Qingjun Wu; Shaoli Wang; Baoyun Xu; Xianchun Li; Xinqiu Tan; Murad Ghanim; Baoli Qiu; Huipeng Pan; Dong Chu; Helene Delatte; M.N. Maruthi; Feng Ge; Xueping Zhou; Xiaowei Wang; Fang-Hao Wan; Yuzhou Du

Abstract The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future ‘pan-genomic’ comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.


Pest Management Science | 2011

Induction effects of host plants on insecticide susceptibility and detoxification enzymes of Bemisia tabaci (Hemiptera: Aleyrodidae)

Wen Xie; Shaoli Wang; Qingjun Wu; Yuntao Feng; Huipeng Pan; Xiaoguo Jiao; Long Zhou; Xin Yang; Wei Fu; Haiyuan Teng; Baoyun Xu; Youjun Zhang

BACKGROUND The polyphagous B-biotype Bemisia tabaci (Gennadius) has developed a high resistance to commonly used insecticides in China. To illustrate the induced changes by host plant, bioassay and biochemical research on five different host populations were investigated. RESULTS Except for bifenthrin, all tested insecticides showed lower toxicity to the B. tabaci poinsettia population compared with other host populations. Moreover, four insecticides, the exceptions being abamectin and fipronil, showed highest toxicity towards the tomato population. The LC(50) values of the poinsettia population, particularly towards acetamiprid, were 14.8-, 10.3- and 7.29-fold higher than those of tomato, cucumber and cabbage respectively. The CarE activities of B. tabaci cabbage and cucumber populations were all significantly higher than those of poinsettia, cotton and tomato populations. The ratio of the cabbage population was 1.97-, 1.79- and 1.30-fold higher than that of poinsettia, cotton and tomato respectively. The frequency profiles for this activity also have obvious differences. The GST and P450 activities of the cucumber population were the lowest in the five host populations. CONCLUSION Long-term induction of host plants for B-biotype B. tabaci could influence their susceptibilities to several insecticides. Rational selection and usage of insecticides for particular hosts will be helpful for resistance management and control of this species.


Scientific Reports | 2013

Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci

Yong Fang; Xiaoguo Jiao; Wen Xie; Shaoli Wang; Qingjun Wu; Xiaobin Shi; Gong Chen; Qi Su; Xin Yang; Huipeng Pan; Youjun Zhang

Bemisia tabaci, the whitefly vector of Tomato yellow leaf curl virus (TYLCV), seriously reduces tomato production and quality. Here, we report the first evidence that infection by TYLCV alters the host preferences of invasive B. tabaci B (Middle East-Minor Asia 1) and Q (Mediterranean genetic group), in which TYLCV-free B. tabaci Q preferred to settle on TYLCV-infected tomato plants over healthy ones. TYLCV-free B. tabaci B, however, preferred healthy tomato plants to TYLCV-infected plants. In contrast, TYLCV-infected B. tabaci, either B or Q, did not exhibit a preference between TYLCV-infected and TYLCV-free tomato plants. Based on gas chromatography-mass spectrometry (GCMS)analysis of plant terpene volatiles, significantly more β-myrcene, thymene, β-phellandrene, caryophyllene, (+)-4-carene, and α-humulene were released from the TYLCV-free tomato plants than from the TYLCV-infected ones. The results indicate TYLCV can alter the host preferences of its vector Bemisia tabaci B and Q.


International Journal of Biological Sciences | 2012

Difference in feeding behaviors of two invasive whiteflies on host plants with different suitability: implication for competitive displacement.

Baiming Liu; Fengming Yan; Dong Chu; Huipeng Pan; Xiaoguo Jiao; Wen Xie; Qingjun Wu; Shaoli Wang; Baoyun Xu; Xuguo Zhou; Youjun Zhang

In China, Bemisia tabaci Q (commonly known as biotype Q) has rapidly displaced B (commonly known as biotype B) in the past 6 years. The mechanisms underlying such phenomenon have been studied extensively in recent years; however, we have not come to a definitive conclusion yet. In the present study, the differences in host suitability between B and Q whitefly adults to five host plants (cabbage, cotton, cucumber, poinsettia, and tomato) were evaluated based on their respective feeding behaviors using a direct-current electrical penetration graph (DC-EPG) system. Pair-wise comparisons of B. tabaci B and Q feeding on each of the five host plants clearly indicate that Q feeds better than B on tomato, cotton and poinsettia, while B feeds better than Q on cabbage and cucumber. The EPG parameters related to both phloem and non-phloem phases confirm that cabbage and cucumber are best suited to B, while tomato, cotton, and poinsettia are best suited to Q. Our present results support the contention that host suitability and adult feeding behavior contribute to the competitive displacement of biotype B by biotype Q. The discrepancy between field (previous studies) and laboratory results (this study), however, suggests that 1) whitefly displacement is apparently contributed by multiple factors; and 2) factor(s) other than the host plant suitability may play a vital role in dictating the whitefly biotypes in the field.


Scientific Reports | 2015

Bemisia tabaci Q carrying tomato yellow leaf curl virus strongly suppresses host plant defenses

Xiaobin Shi; Huipeng Pan; Hongyi Zhang; Xiaoguo Jiao; Wen Xie; Qingjun Wu; Shaoli Wang; Yong Fang; Gong Chen; Xuguo Zhou; Youjun Zhang

The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China.


Environmental Entomology | 2013

Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide.

Qi Su; Kerry M. Oliver; Huipeng Pan; Xiaoguo Jiao; Baiming Liu; Wen Xie; Shaoli Wang; Qingjun Wu; Baoyun Xu; Jennifer A. White; Xuguo Zhou; Youjun Zhang

ABSTRACT Bacterial symbionts infect most insect species, including important pests such as whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and often exert important effects on host ecology. The facultative symbiont Hamiltonella is found at high frequencies in the B. tabaciMED (type: Mediterranean—MED) in China. The prevalence of this symbiont in natural populations suggests beneficial effects of infection or manipulation of host reproduction. To date, however, no empirical studies on the biological role of Hamiltonella on the host B. tabaci have been reported. Here, we investigated the effects of Hamiltonella infection on the sex ratio and several fitness parameters in B. tabaci MED by comparing Hamiltonella-infected whiteflies with Hamiltonella-free ones. We found that Hamiltonella-infected whiteflies produced significantly more eggs, exhibited significantly higher nymphal survival, faster development times, and larger adult body size in comparison with Hamiltonella-free whiteflies, while no evidence of reproductive manipulation by Hamiltonella were found in B. tabaci MED. In conclusion, Hamiltonella infection substantially enhanced B. tabaci MED performance. This beneficial role may, at least partially, explain the high prevalence of Hamiltonella in B. tabaci MED populations and may also contribute to their effectiveness in spread of the plant pathogens tomato yellow leaf curl virus.


Entomologia Experimentalis Et Applicata | 2013

Differences in host selection and performance between B and Q putative species of Bemisia tabaci on three host plants

Xiaoguo Jiao; Wen Xie; Shaoli Wang; Qingjun Wu; Huipeng Pan; Baiming Liu; Youjun Zhang

B and Q are two putative species of the Bemisia tabaci complex (Hemiptera: Aleyrodidae), and are among the most invasive and destructive pests of crops and horticultural plants worldwide. In China, Q predominates and is displacing B. Although researchers have proposed that the higher capacity of Q to utilize host plants plays an important role in its replacement of B, there are few relevant field surveys and experimental studies. The difference in host assessment between B and Q in multiple‐choice rather than in no‐choice situations may be essential to understanding the displacement. Here, we compared settling and oviposition preferences, and adult and nymph performance, for the putative species B and Q of the B. tabaci complex on three common host species: poinsettia [Euphorbia pulcherrima Wild. ex Klotsch (Euphorbiaceae)], cotton [Gossypium hirsutum L. (Malvaceae)], and cabbage [Brassica oleracea L. (Brassicaceae)]. Although the preferred hosts for settling and oviposition were the same as those that supported maximum fitness (adult longevity, fecundity, and nymph survivorship), these hosts differed between B and Q. When given a choice, B preferred to settle and oviposit on cabbage over poinsettia and cotton, whereas Q preferred to settle and oviposit on poinsettia and cotton over cabbage. In a no‐choice experiment, adult longevity, fecundity, and nymphal survival for B were greater on cabbage than on poinsettia and cotton, but the opposite was true for Q.

Collaboration


Dive into the Xiaoguo Jiao's collaboration.

Top Co-Authors

Avatar

Wen Xie

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huipeng Pan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Qi Su

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin Yang

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuguo Zhou

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Dong Chu

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gong Chen

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan L. Preisser

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge