Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaohong Shen is active.

Publication


Featured researches published by Xiaohong Shen.


Journal of Cancer Research and Clinical Oncology | 2010

Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma

Xiaohong Shen; Na Li; Hui Li; Ti Zhang; Feng Wang; Qiang Li

Background and purposeFew detailed studies about the correlations among the expanded prevalence, elevated function of Treg cells in tumor microenvironment of hepatocellular carcinoma (HCC), and different clinical tumor stage were reported. The purpose of the present study was to examine the presence and functions of CD4+CD25high regulatory T cell (Treg cell) in tumor microenvironment from early and late stages and reveal the potential underlying mechanisms that may be responsible.MethodThe prevalence of Treg in peripheral blood and fresh tissue samples from 31 patients with HCC after radical hepatectomy and 9 controls was detected. CD127 was selected as a Treg cell maker to test the cell populations and compared its expressions with ICOS. The expressions of FOXP3 mRNA were analyzed. The migration, proliferation, and suppression functions of Treg cell were observed. IFN-γ., IL-10, TGF-ß, CCL-17, CCL-22, and SDF-1 in cell supernatant were detected. Among all of the tests, the relations among the different TNM tumor stages, populations, and functions of Treg cells were evaluated.ResultsThe prevalence of Treg cell was significantly higher in the peripheral blood and in tumor tissue compared with those in normal donors. Increased numbers of Treg cell were showed in peripheral blood as well as in tumor tissue. High levels of IL-10 and TGF-ß, but little IFN-γ, were detected in the tumor microenvironment. Treg cells potently suppressed the functions and proliferation of CD4+CD25− T cells. High levels of SDF-1 were detected in malignant biopsies compared with those in benign regions, significantly increased in stage III. Plasma from the same patient was able to chemoattract Treg cell but that was lesser extent than those in tumor supernatant. Also, supernatant in advanced stage tumors exhibited powerful chemoattractic activity. SDF-1 played an important role in the recruited functions of Treg cell into tumor microenvironment of early and advanced stages. The expressions of Foxp3 mRNA increased in different TNM stages. The increased prevalence and expanded function of Treg cells in the tumor microenvironment of HCC were correlated with the cancer stage.ConclusionThe increase in frequency of Treg cells might play a role in modulation of the immune response against HCC in different TNM stages. The substance secreted in tumor microenvironment recruited CD4+CD25+ Treg cells to tumor sites to contribute to the prosperity and growth of the tumors. The performance of Treg cells in different TNM stages of tumor microenvironment might be acted as the route to evaluate the immunotherapy-based methods, promote therapy effect, and consequently to increase the survival rate in HCC.


Cancer Letters | 2013

The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells

Fuqiang Xu; Xiaona You; F. Liu; Xiaohong Shen; Yuanqing Yao; Lihong Ye; Xiaodong Zhang

Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. In this study, we found that the expression levels of HBXIP were positively associated with those of S-phase kinase-associated protein 2 (Skp2) in clinical breast cancer tissues and cell lines. Moreover, we found that HBXIP was able to stimulate the promoter of Skp2 through binding to the -640/-443 region in Skp2 promoter involving activating E2F transcription factor 1 (E2F1). Skp2 plays crucial roles in HBXIP-enhanced proliferation of breast cancer cells in vitro and in vivo. We conclude that HBXIP up-regulates Skp2 via activating E2F1 to promote proliferation of breast cancer cells.


Cancer Biology & Therapy | 2016

Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells

Xiaodan He; Juan Wang; Wei Wei; Meiyan Shi; Beibei Xin; Ti Zhang; Xiaohong Shen

ABSTRACT Pancreatic cancer is a drug resistant hypovascular tumor. Although there are many studies on the mechanism of chemoresistance in pancreatic cancers, studies on the relationship between ABCG2 and chemoresistance during hypoxia of pancreatic cancer are rare. Hypoxia-inducible factor-1 (HIF-1α) is a master regulator of the transcriptional response to oxygen deprivation in cancer cells. The aim of this study was to examine the role of ABCG2 and HIF-1α in mediating chemoresistance during hypoxia in pancreatic cancer. In this study, we detected the expression levels of ABCG2, ERK/phosphorylated-ERK (p-ERK) and HIF-1α by immunohistochemistry in fresh pancreatic cancer and paracarcinoma tissues obtained from 25 patients. The mechanism by which p-ERK1/2 and HIF-1α affect ABCG2s expression was analyzed in the hypoxic cultured human pancreatic cancer cell line Capan-2. ABCG2-mediatedregulation of gemcitabine response under hypoxic conditions in pancreatic cancer cells was observed. It was found that ABCG2, ERK/p-ERK and HIF-1α were overexpressed in cancer tissues. ABCG2, HIF-1α and p-ERK levels were demonstrated to be high during hypoxic conditions in pancreatic cancer cells. Hypoxia induced phosphorylation of ERK1/2 to activate HIF-1α and contribute the ABCG2 expression and mediated gemcitabine chemoresistance in pancreatic cancer cells. Hypoxic conditions induced HIF-1α binding to target gene sequences in the ABCG2 promoter, resulting in increased transcription in pancreatic cancer cells. We demonstrated that hypoxia-induced chemoresistance is due to the regulation of ABCG2 through the activation of ERK1/2/HIF-1α. ABCG2 could serve as a predictor of gemcitabine response and, potentially, as a chemotherapeutic target in pancreatic cancer. Inhibition of ERK1/2 and HIF-1αcould result in increased gemcitabine sensitization in pancreatic cancer with highly expressed ABCG2 cell member protein.


Apoptosis | 2015

Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway

Meiyan Shi; Xiaodan He; Wei Wei; Juan Wang; Ti Zhang; Xiaohong Shen

As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC’s expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic processes. TNC mediated gemcitabine chemo-resistance via modulating cell apoptosis in pancreatic cancer. TNC resulted in the enrichment of pancreatic cancer cells in S-phase with a concomitant decrease in number of cells in G1 phase. The present study indicated TNC in cellular matrix induces an activation of ERK1/2/NF-κB/p65 signaling cascade and thereby mediates resistance to apoptosis in pancreatic cancer. TNC could serve as a diagnostic marker and predictor of gemcitabine response and potentially as a target for chemotherapy of pancreatic cancer.


Hepatobiliary & Pancreatic Diseases International | 2014

WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

Wei Wei; Hui Hui Sun; Na Li; Hong Yue Li; Xin Li; Qiang Li; Xiaohong Shen

BACKGROUND Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemo-resistance in pancreatic cancer tissues and cell lines. METHODS Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.


Experimental Cell Research | 2016

Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

Juan Wang; Beibei Xin; Hui Wang; Xiaodan He; Wei Wei; Ti Zhang; Xiaohong Shen

Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer.


Oncotarget | 2017

Tenascin-C induces migration and invasion through JNK/c-Jun signalling in pancreatic cancer

Jun Cai; Shaoxia Du; Hui Wang; Beibei Xin; Juan Wang; Wenyuan Shen; Wei Wei; Zhongkui Guo; Xiaohong Shen

Tenascin-C (TNC), a large extracellular matrix glycoprotein, has been reported to be associated with metastasis and poor prognosis in pancreatic cancer. However, the effects and mechanisms of TNC in pancreatic cancer metastasis largely remain unclear. We performed Transwell assays to investigate the effects of TNC on Capan-2, AsPC-1 and PANC-1 cells. In addition, western blot and RT-qPCR assays were used to examine potential TNC metastasis-associated targets, such as JNK/c-Jun, Paxillin/FAK, E-cadherin, N-cadherin, Vimentin, and MMP9/2. Lastly, we utilized a variety of methods, such as immunofluorescence, gelatin zymography and immunoprecipitation, to determine the molecular mechanisms of TNC in pancreatic cancer cell motility. The present study showed that TNC induced migration and invasion in pancreatic cancer cells and regulated a number of metastasis-associated proteins, including the EMT markers, MMP9 and Paxillin. Moreover, our data showed that TNC induced pancreatic cancer cells to generate an EMT phenotype and acquire motility potential through the activation of JNK/c-Jun signalling. In addition, TNC increased the DNA binding activity of c-Jun to the MMP9 promoter, an action likely resulting in increased MMP9 expression and activity. TNC/JNK also markedly induced the phosphorylation of Paxillin on serine 178, which is critical for the association between FAK and Paxillin and promoted the formation of focal adhesions. TNC/JNK initiates cell migration and invasion of pancreatic cancer cells through the promotion of EMT, the transactivation of MMP9 and the phosphorylation of Paxillin on serine 178. TNC may be a potential therapeutic target for treating pancreatic cancer metastasis.


Cell Biochemistry and Function | 2017

Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells

Hui Wang; Jun Cai; Shaoxia Du; Zhongkui Guo; Beibei Xin; Juan Wang; Wei Wei; Xiaohong Shen

Fractalkine (FKN, CX3CL1) is highly expressed in a majority of malignant solid tumours. Fractalkine is the only known ligand for CX3CR1. In this study, we performed an analysis to determine the effects of fractalkine/CX3CR1 on modulating apoptosis and explored the related mechanisms. The expression of fractalkine/CX3CR1 was detected by immunohistochemistry and western blotting. The levels of AKT/p‐AKT, BCL‐xl, and BCL‐2 were detected by western blotting. Then, the effects of exogenous and endogenous fractalkine on the regulation of tumour apoptosis and proliferation were investigated. The mechanism of fractalkine/CX3CR1 on modulating apoptosis in cancer cells through the activation of AKT/NF‐κB/p65 signals was evaluated. The effect of fractalkine on regulating cell cycle distribution was also tested. Fractalkine, AKT/p‐AKT, and apoptotic regulatory proteins BCL‐xl and BCL‐2 were highly expressed in human pancreatic cancer tissues. In vitro, fractalkine/CX3CR1 promoted proliferation and mediated resistance to apoptosis in pancreatic cancer cells. The antiapoptotic effect of fractalkine was induced by the activation of AKT/NF‐κB/p65 signalling in pancreatic cancer cells. The NF‐κB/p65 contributes to promote the expressions of BCL‐xl and BCL‐2 and reduce caspase activity, thereby inhibiting apoptotic processes. Treatment with fractalkine resulted in the enrichment of pancreatic cancer cells in S phase with a concomitant decrease in the number of cells in G1 phase. The present study demonstrated the function of fractalkine in the activation of the AKT/NF‐κB/p65 signalling cascade and mediation of apoptosis resistance in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as a diagnostic marker and as a potential target for chemotherapy in early stage pancreatic cancer. Pancreatic cancer is characterized by local recurrence, neural invasion, or distant metastasis. The present study demonstrated the overexpression of fractalkine/CX3CR1 in pancreatic cancer tissues, indicating its important role in the tumourigenesis of pancreatic cancer, and suggested that the overexpression of fractalkine/CX3CR1 could serve as a diagnostic marker for pancreatic cancer. Moreover, we reveal the mechanism that fractalkine functions on the activation of the AKT/NF‐κB/p65 signalling cascade and regulation of the antiapoptosis process in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as an effective therapeutic target of chemotherapeutic and biologic agents in early stage pancreatic cancer.


Pancreatology | 2016

Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer.

Beibei Xin; Xiaodan He; Juan Wang; Jun Cai; Wei Wei; Ti Zhang; Xiaohong Shen

BACKGROUND Perineural invasion (PNI) is extremely high frequency among the various metastatic routes in pancreatic cancer. Nerve growth factor, secreted by astroglial cells, exerts effects on tumor invasion in some cancer cells, but its function on migration and invasion in pancreatic cancer is still unclear. In the present study, we determined the effects of NGF on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. METHODS NGF and CD133 expression were detected in tumor tissues using immunohistochemical analysis and Western blotting analysis. The effects of NGF on the regulation of CD133 expression and the promotion of cancer migration and invasion were investigated using wound healing and matrigel transwell assay. A related mechanism that NGF regulates CD133s function via activating ERK1/2 signaling also was observed. RESULTS NGF/CD133 is overexpressed in human pancreatic cancer and promotes the migration and invasion of human pancreatic cancer cells through the activation of the ERK/CD133 signaling cascade. NGF/ERK signaling modulates the cancer cell EMT process, migration and invasion through the regulation of CD133 expression and its subcellular localization. CONCLUSIONS NGF/CD133 signaling initiated the migration and invasion of pancreatic cancer cells. NGF/CD133 might be an effective and potent therapeutic target for pancreatic cancer metastasis, particularly in PNI.


Experimental Cell Research | 2018

Artemin regulates CXCR4 expression to induce migration and invasion in pancreatic cancer cells through activation of NF-κB signaling.

Juan Wang; Hui Wang; Jun Cai; Shaoxia Du; Beibei Xin; Wei Wei; Ti Zhang; Xiaohong Shen

Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most lethal human malignant tumor because of the early onset of local invasion and distant metastasis. Perineural invasion is a prominent characteristic of pancreatic adenocarcinoma, which is a multifactorial process that involves various signaling molecules from different signaling pathways. The glial cell line‐derived neurotrophic factor family of ligands was reported to be involved in perineural invasion in pancreatic cancer. Artemin is one member of the glial cell line‐derived neurotrophic factor family of ligands. Although Artemin has previously been demonstrated to promote invasiveness of pancreatic cancer, the mechanisms remain poorly understood. In this study, we performed an analysis to determine the effects of Artemin on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Artemin and CXCR4 were overexpressed in cancer tissues and widely expressed in pancreatic cancer cell lines. We observed that activation of ERK1/2 and Akt in Artemin‐treated cells led to enhanced nuclear accumulation of NF‐&kgr;B, which then induced CXCR4 expression. Through regulation of the expression of CXCR4, Artemin functionally promoted the migration and invasion in pancreatic cancer cells. The present study indicated that Artemin induced CXCR4 expression by activating Akt and ERK 1/2/NF‐&kgr;B signaling, thereby modulating tumor cell metastatic potential and invasion activity in pancreatic cancer by regulating SDF‐1&agr;/CXCR4 axis. Artemin might be an effective and potent therapeutic target for pancreatic cancer metastasis, especially in perineural invasion. HighlightsArtemin regulates CXCR4 expression to induce migration and invasion in pancreatic cancer cells through activation of NF‐&kgr;B signaling.Artemin activates Akt and ERK, which cooperatively mediates activation of NF‐&kgr;B and subsequent CXCR4 up‐regulation.Artemin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating Akt and ERK1/2/NF‐&kgr;B/CXCR4 signaling.

Collaboration


Dive into the Xiaohong Shen's collaboration.

Top Co-Authors

Avatar

Wei Wei

Tianjin Medical University Cancer Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ti Zhang

Tianjin Medical University Cancer Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Qiang Li

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge