Xiaohua Liu
Wake Forest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaohua Liu.
Journal of Biological Chemistry | 2015
Chen Liu; Nadeem Wajih; Xiaohua Liu; Swati Basu; John Janes; Madison Marvel; Christian Keggi; Christine C. Helms; Amber N. Lee; Andrea Belanger; Debra I. Diz; Paul J. Laurienti; David L. Caudell; Jun Wang; Mark T. Gladwin; Daniel B. Kim-Shapiro
Background: Erythrocytes contribute to nitrite-mediated NO signaling, but the mechanism is unclear. Results: Deoxyhemoglobin accounts for virtually all NO made from nitrite by erythrocytes with no contributions from other proposed pathways. Conclusion: Deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions. Significance: Reduction by deoxyhemoglobin accounts for nitrite-mediated NO signaling in blood mediating vessel tone and platelet function. Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood.
Redox biology | 2013
Chen Liu; Xiaohua Liu; John Janes; Ryan Stapley; Rakesh P. Patel; Mark T. Gladwin; Daniel B. Kim-Shapiro
The blood storage lesion involves morphological and biochemical changes of red blood cells (RBCs) that occur during storage. These include conversion of the biconcave disc morphology to a spherical one, decreased mean corpuscular hemoglobin concentration, varied mean corpuscular volume, reduced integrity of the erythrocyte membrane with formation of microparticles, and increased cell-free hemoglobin. We studied the extent that older stored red blood cells scavenge nitric oxide (NO) faster than fresher stored red blood cells. Using electron paramagnetic resonance spectroscopy and stopped-flow absorption spectroscopy to measure the rate of NO uptake and reaction with hemoglobin in red cells, we found that older stored red blood cells scavenge NO about 1.8 times faster than fresher ones. Based on these experimental data, we simulated NO scavenging by fresher or older stored red blood cells with a biconcave or spherical geometry, respectively, in order to explore the mechanism of NO scavenging related to changes that occur during blood storage. We found that red blood cells with a spherical geometry scavenges NO about 2 times slower than ones with a biconcave geometry, and a smaller RBC hemoglobin concentration or volume increases NO scavenging by red blood cells. Our simulations demonstrate that even the most extreme possible changes in mean corpuscular hemoglobin concentration and mean corpuscular volume that favor increased NO scavenging are insufficient to account for what is observed experimentally. Therefore, RBC membrane permeability must increase during storage and we find that the permeability is likely to increase between 5 and 70 fold. Simulations using a two-dimensional blood vessel show that even a 5-fold increase in membrane permeability to NO can reduce NO bioavailability at the smooth muscle. Background Transfusion of older stored blood may be harmful. Results Older stored red blood cells scavenge nitric oxide more than fresher cells. Conclusion As stored red blood cells age, structural and biochemical changes occur that lead to faster scavenging. Significance Increased nitric oxide scavenging by red blood cells as a function of storage age contributes to deleterious effects upon transfusion.
Redox biology | 2016
Nadeem Wajih; Xiaohua Liu; Pragna Shetty; Swati Basu; Hanzhi Wu; Neil Hogg; Rakesh P. Patel; Cristina M. Furdui; Daniel B. Kim-Shapiro
Previous work has shown that red blood cells (RBCs) reduce nitrite to NO under conditions of low oxygen. Strong support for the ability of red blood cells to promote nitrite bioactivation comes from using platelet activation as a NO-sensitive process. Whereas addition of nitrite to platelet rich plasma in the absence of RBCs has no effect on inhibition of platelet activation, when RBCs are present platelet activation is inhibited by an NO-dependent mechanism that is potentiated under hypoxia. In this paper, we demonstrate that nitrite bioactivation by RBCs is blunted by physiologically-relevant concentrations of nutrients including glucose and the important signaling amino acid leucine. Our mechanistic investigations demonstrate that RBC mediated nitrite bioactivation is largely dependent on nitrosation of RBC surface proteins. These data suggest a new expanded paradigm where RBC mediated nitrite bioactivation not only directs blood flow to areas of low oxygen but also to areas of low nutrients. Our findings could have profound implications for normal physiology as well as pathophysiology in a variety of diseases including diabetes, sickle cell disease, and arteriosclerosis.
Biological Chemistry | 2017
Christine C. Helms; Xiaohua Liu; Daniel B. Kim-Shapiro
Abstract Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.
JCI insight | 2018
Kenneth E. Remy; Irene Cortés-Puch; Steven B. Solomon; Junfeng Sun; Benjamin M. Pockros; Jing Feng; Juan J. Lertora; Roy R. Hantgan; Xiaohua Liu; Andreas Perlegas; H. Shaw Warren; Mark T. Gladwin; Daniel B. Kim-Shapiro; Harvey G. Klein; Charles Natanson
During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock.
Free Radical Biology and Medicine | 2016
Xiaohua Liu; Swati Basu; Daniel B. Kim-Shapiro
Free Radical Biology and Medicine | 2015
Nadeem Wajih; Xiaohua Liu; Pragna Shetty; Hanzhi Wu; Swati Basu; Cristina M. Furdui; Neil Hogg; Rakesh P. Patel; Daniel B. Kim-Shapiro
Nitric Oxide | 2014
Chen Liu; Xiaohua Liu; Nadeem Wajih; John Janes; Swati Basu; Madison Marvel; Christine C. Helms; Debra I. Diz; Paul J. Laurienti; David L. Caudell; Jun Wang; Mark T. Gladwin; Daniel B. Kim-Shapiro
Nitric Oxide | 2014
Nadeem Wajih; Jun Wang; Swati Basu; Xiaohua Liu; Christian Keggi; Madison Marvel; Mark T. Gladwin; Daniel B. Kim-Shapiro
Free Radical Biology and Medicine | 2014
Nadeem Wajih; Jun Wang; Xiaohua Liu; Christian Keggi; Amber N. Lee; Andrea Belanger; Courtney Sparacino-Watkins; Mark T. Gladwin; Daniel B. Kim-Shapiro