Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojing Long is active.

Publication


Featured researches published by Xiaojing Long.


Human Brain Mapping | 2013

Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: Statistical parametric mapping with high resolution MRI

Xiaojing Long; Lijuan Zhang; Weiqi Liao; Bensheng Qiu

Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high‐resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimers disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high‐resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region‐specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD. Hum Brain Mapp 34:3400–3410, 2013.


PLOS ONE | 2014

Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

Lijuan Zhang; Chao Zou; Xiaojing Long; Xin Liu; Weiqi Liao; Yanjun Diao

Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI). To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM) within a 24-hour interval. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial (λ//) and radial diffusivity (λ⊥) were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58%) was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05), while no hemispheric preference was observed for the same analysis for ADC (p = 0.77), λ// (p = 0.08) or FA (p = 0.25). The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.


PLOS ONE | 2017

Prediction and classification of Alzheimer disease based on quantification of MRI deformation

Xiaojing Long; Lifang Chen; Lijuan Zhang

Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer’s disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination.


Frontiers in Human Neuroscience | 2016

Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI

Li Yi; Shi Su; Caiyun Shi; Xiaojing Long; Guoxi Xie; Lijuan Zhang

It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.


Acupuncture in Medicine | 2013

MRI evaluation of metal acupuncture needles

Ling Mei; Xiaojing Long; Yanjun Diao; Haibo Yu; Wanzhang Yang; Leanna J. Standish; Bensheng Qiu

Objective To evaluate the MR compatibility of three metal acupuncture needles (a standard stainless steel needle, a gold needle and an austenitic stainless steel needle) by comparing their imaging artefacts, radiofrequency heating effects and ease of operation. Methods The MRI artefacts of the three metal needles were first evaluated by placing them in an agar gel phantom and performing MRI of the phantom. The increase in temperature during MRI was recorded using an MR-compatible fibreoptic thermometer. MRI of acupuncture at SP6 was performed using the MR-compatible gold needle and the austenitic stainless steel needle. Results The standard stainless steel acupuncture needle produced large imaging artefacts on MRI. The gold needle was superior for MRI but not rigid enough for some clinical applications such as scalp acupuncture. The austenitic stainless steel needle is non-ferromagnetic and compatible with MRI. None of these acupuncture needles introduced radiofrequency heating during MRI. Conclusions The evaluation of MR compatibility showed that gold and austenitic stainless steel needles are MR-compatible and therefore can be used for MRI of acupuncture.


Frontiers in Human Neuroscience | 2017

Alterations in White Matter Integrity in Young Adults with Smartphone Dependence

Yuanming Hu; Xiaojing Long; Hanqing Lyu; Yangyang Zhou; Jianxiang Chen

Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments.


Magnetic Resonance Imaging | 2018

High spatial resolution BOLD fMRI using simultaneous multislice excitation with echo-shifting gradient echo at 7 Tesla

Shi Su; Na Lu; Lin Jia; Xiaojing Long; Hang Zhang; Ye Li; Kaibao Sun; Rong Xue; Rohan Dharmakumar; Lijuan Zhang; Xin Liu; Guoxi Xie

We introduce an accelerated gradient echo (GRE) sequence combining simultaneous multislice excitation (SMS) with echo-shifting technique for high spatial resolution blood oxygen level dependent (BOLD) functional MRI (fMRI). The simulation was conducted to optimize scan parameters. To validate the feasibility of the proposed technique, the visual and motor task experiments were performed at 7.0 Tesla (T). The single-shot EPI sequence was also applied in comparison with the proposed technique. The simulation results showed that an optimized flip angle of 9° provided maximal BOLD contrast for our scanning scheme, allowing low power deposition and SMS acceleration factor of 5. Additionally, parallel acquisition imaging with acceleration factor of 2 was utilized, which allowed a total acceleration factor of 10 in volunteer study. The experiment results showed that geometric distortion-free BOLD images with voxel size of 1.0 × 1.0 × 2.5 mm3 were obtained. Significant brain activation was identified in both visual and motor task experiments, which were in accordance with previous investigations. The proposed technique has potential for high spatial resolution fMRI at ultra-high field because of its sufficient BOLD sensitivity as well as improved acquisition speed over conventional GRE-based techniques.


Behavioural Neurology | 2018

Morphological Biomarker Differentiating MCI Converters from Nonconverters: Longitudinal Evidence Based on Hemispheric Asymmetry

Xiaojing Long; Lijuan Zhang

Identifying subjects with mild cognitive impairment (MCI) who may probably progress to Alzheimers disease (AD) is important for better understanding the disease mechanisms and facilitating early treatments. In addition to the direct volumetric and thickness measurement based on high-resolution magnetic resonance imaging (MRI), hemispheric asymmetry could be a potential index to detect morphological variations in MCI patients with a high risk of conversion to AD. The present study collected a set of longitudinal MRI data from 53 MCI converters and nonconverters and investigated the asymmetry differences between groups. Asymmetry variation was observed in the medial temporal lobe, especially in the entorhinal cortex, between converters and nonconverters 3 years before the former developed AD. The proposed asymmetry analysis was observed to be sensitive to detect morphological changes between groups as compared to the methods of voxel-based morphometry (VBM) and thickness measurement. Hemispheric asymmetry in specific brain regions as a neuroimaging biomarker can provide helpful information for prediction of MCI conversion.


Human Brain Mapping | 2013

Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: Statistical parametric mapping with high resolution MRI: Laterality Alterations in Aging, MCI and AD

Xiaojing Long; Lijuan Zhang; Weiqi Liao; Bensheng Qiu

Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high‐resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimers disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high‐resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region‐specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD. Hum Brain Mapp 34:3400–3410, 2013.


Human Brain Mapping | 2013

Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging

Xiaojing Long; Lijuan Zhang; Weiqi Liao; Bensheng Qiu

Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high‐resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimers disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high‐resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region‐specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD. Hum Brain Mapp 34:3400–3410, 2013.

Collaboration


Dive into the Xiaojing Long's collaboration.

Top Co-Authors

Avatar

Lijuan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weiqi Liao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bensheng Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanjun Diao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoxi Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shi Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Caiyun Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chao Zou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dong Liang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge