Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojun Xiang is active.

Publication


Featured researches published by Xiaojun Xiang.


Biochemical and Biophysical Research Communications | 2015

miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

Lu-Ying Wan; Jun Deng; Xiaojun Xiang; Ling Zhang; Feng Yu; Jun Chen; Zhe Sun; Miao Feng; Jianping Xiong

miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320-FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.


Cellular Physiology and Biochemistry | 2015

MiR-1271 Inhibits Cell Proliferation, Invasion and EMT in Gastric Cancer by Targeting FOXQ1.

Xiaojun Xiang; Jun Deng; Ya-Wen Liu; Lu-Ying Wan; Miao Feng; Jun Chen; Jianping Xiong

Background/Aims: FOXQ1 overexpression has been reported to enhance tumor growth and invasion. However, the biological function of FOXQ1 and the mechanism underlying its upregulation in gastric cancer (GC) remain unknown. Methods: QPCR was used to detect the expression of miR-1271 and FOXQ1 in specimens from GC patients. FOXQ1-siRNA, and miR-1271 mimics and inhibitor were transfected into human MGC-803 and SGC-7901 cells. The transwell assay was used to examine the cell invasive ability. The regulation mechanism was confirmed by luciferase reporter assay. Markers of epithelial-mesenchymal transition (EMT) were detected by western blot analysis. Results: MiR-1271 was downregulated in both GC tissues and GC cell lines. The expression of miR-1271 was inversely correlated with tumor size (P = 0.017), tumor stage (P = 0.035), lymph node metastasis (P = 0.018), and TNM stage (P = 0.025). Ectopic expression of miR-1271 dramatically suppressed GC cell proliferation, invasion, and EMT. Furthermore, FOXQ1 was identified as a direct target of miR-1271. Knockdown of FOXQ1 inhibited GC cell malignant behavior, whereas FOXQ1 overexpression partially restored the suppression effects of miR-1271. Additionally, miR-1271 expression was negatively correlated with FOXQ1 in GC tissues. Conclusions: MiR-1271 inhibits cell proliferation, invasion, and EMT in GC by directly suppressing FOXQ1 expression.


Tumor Biology | 2015

MicroRNA-506 inhibits gastric cancer proliferation and invasion by directly targeting Yap1

Jun Deng; Wan Lei; Xiaojun Xiang; Ling Zhang; Feng Yu; Jun Chen; Miao Feng; Jianping Xiong

Increasing evidence indicates that microRNA (miR)-506 plays a vital role in tumorigenesis; however, the role of miR-506 in gastric cancer (GC) is unclear and needs further investigation. In the present study, we showed that the decrease in the expression of miR-506 is associated with tumor size, pathological tumor node metastasis (TNM) stage, and lymph node metastasis in 63 GC patient tumors. We found that patients with lower expression of miR-506 had a poor prognosis than that with the patients with high expression of miR-506. Notably, the ectopic expression of miR-506 was sufficient to inhibit cell proliferation, invasion, and epithelial-mesenchymal transition in the GC cells. Moreover, results from luciferase reporter assays identified miR-506 as a direct regulator of Yes-associated protein 1 (Yap1). Reintroduction of Yap1 rescues miR-506-induced effects on SGC-7901 cell proliferation and invasion. This function of miR-506/Yap1 axis is clinically significant, as the level of miR-506 is inversely correlated with Yap1 mRNA expression in matched tissues. Thus, our study demonstrates that miR-506 may act as a tumor suppressor in GC and that the miR-506/Yap1 axis may help us better understand the molecular mechanisms of GC progression.


Oncotarget | 2016

Cullin 4A (CUL4A), a direct target of miR-9 and miR-137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway

Jun Deng; Wan Lei; Xiaojun Xiang; Ling Zhang; Jun Lei; Yu Gong; Meijiao Song; Yi Wang; Ziling Fang; Feng Yu; Miao Feng; Ze Sun; Jun Chen; Zhengyu Zhan; Jianping Xiong

Although Cullin 4A (CUL4A) is mutated or amplified in several human cancer types, its role in gastric cancer (GC) and the mechanisms underlying its regulation remain largely uncharacterized. In the present study, we report that the expression of CUL4A significantly correlated with the clinical stage of the tumor and lymph node metastasis, and survival rates were lower in GC patients with higher levels of CUL4A than in patients with lower CUL4A levels. The upregulation of CUL4A promoted GC cell proliferation and epithelial-mesenchymal transition (EMT) by downregulating LATS1-Hippo-YAP signaling. Knocking down CUL4A had the opposite effect in vitro and in vivo. Interestingly, CUL4A expression was inhibited by the microRNAs (miRNAs), miR-9 and miR-137, which directly targeted the 3′-UTR of CUL4A. Overexpression of miR-9 and miR-137 downregulated the CUL4A-LATS1-Hippo signaling pathway and suppressed GC cell proliferation and invasion in vitro. Taken together, our findings demonstrate that perturbations to miR-9/137-CUL4A-Hippo signaling contribute to gastric tumorigenesis, and suggest potential therapeutic targets for the future treatment of GC.


Tumor Biology | 2015

Interference with the β-catenin gene in gastric cancer induces changes to the miRNA expression profile

Li Dong; Jun Deng; Ze-Min Sun; An-Ping Pan; Xiaojun Xiang; Ling Zhang; Feng Yu; Jun Chen; Zhe Sun; Miao Feng; Jianping Xiong

Aberrant activation of the Wnt/β-catenin signaling pathway plays a major role in carcinogenesis and the progression of many malignant tumors, especially gastric cancer (GC). Some research has suggested that expression of the β-catenin protein is associated with clinicopathologic factors and affects the biological behaviors of GC cells. However, the mechanism of these effects is not yet clear. Studies show that the Wnt/β-catenin pathway regulates some miRNAs. We hypothesize that oncogenic activation of β-catenin signaling is involved in the formation of GC through regulating certain microRNAs (miRNAs). The results of the current study demonstrate that expression of the β-catenin protein is associated with many clinicopathologic characteristics including the degree of differentiation, depth of tumor invasion, tumor site, and 5-year survival rate. We found that silencing the expression of β-catenin with lentiviruses could delay cell proliferation, promote apoptosis, weaken the invasive power of GC cells, and increase the sensitivity of GC cells to 5-fluorouracil in vitro. Using miRNA microarrays to detect changes in the miRNA transcriptome following interference with β-catenin in GC cells, we found that miR-1234-3p, miR-135b-5p, miR-210, and miR-4739 were commonly upregulated and that miR-20a-3p, miR-23b-5p, miR-335-3p, miR-423-5p, and miR-455-3p were commonly downregulated. These data provide a theoretical basis for the potential interaction between miRNA and the β-catenin signaling pathway in GC.


Biochemical and Biophysical Research Communications | 2018

YAP1 inhibits circRNA-000425 expression and thus promotes oncogenic activities of miR-17 and miR-106

Zhen Liu; Shanshan Huang; Yuan Cao; Yangyang Yao; Junhe Li; Jun Chen; Bailing Jiang; Xiang Yuan; Xiaojun Xiang; Jianping Xiong; Jun Deng

YAP1, a vital effector of Hippo pathway, promotes cancer development via transcriptionally regulating a batch of target genes involved in various signaling pathways, including proliferation, apoptosis, and cell drug sensitivity. Recently, circular RNAs (circRNAs) have been shown to control gene expression post-transcriptionally and become a new layer of gene regulation. However, whether circRNAs play roles in YAP1-induced tumorigenesis is still largely elusive. Here, we identify circRNA-000425 as a new inhibitory target of YAP1, and also find that it binds to miR-17/miR-106b, and thus suppresses cancer cell growth induced by these miRNAs. circRNA-000425 is revealed as a YAP1 target through circRNA microarray analysis of RNAs extracted from cells treated with or without YAP1 siRNAs, and further confirmed by RT-q-PCR and ChIP assays. Interestingly, bioinformatics analysis, luciferase assay, and RT-q-PCR results showed that circRNA-000425 binds to miR-17 and miR-106b, but not let-7a, and rescues the inhibitory effect of miR-17/miR-106 on the expressions of both p21 and BIM. In addition, colony formation and MTT assay showed that circRNA-000425 inhibits cancer cell growth induced by miR-17. These findings reveal a mechanism by which YAP1 promotes oncogenic activities of miR-17 and miR-106b through transcriptionally inhibiting circRNA-000425 expression.


Oncology Letters | 2017

TRIM24 promotes the aggression of gastric cancer via the Wnt/β‑catenin signaling pathway

Ziling Fang; Jun Deng; Ling Zhang; Xiaojun Xiang; Feng Yu; Jun Chen; Miao Feng; Jianping Xiong

Tripartite motif-containing 24 (TRIM24) is important in tumor development and progression. However, the role of TRIM24 in gastric cancer (GC) and the mechanisms underlying the dysregulated expression of TRIM24 remain to be fully elucidated. In the present study, it was found that TRIM24 was frequently overexpressed in GC cell lines and tissues compared with normal controls, as determined by western blotting and immunohistochemical staining. The high nuclear expression of TRIM24 was correlated with the depth of invasion (P=0.007), tumor-node-metastasis stage (P=0.005), and lymph node metastasis (P=0.027), and shorter overall survival rates (P=0.010) in patients with GC. Small interfering RNA-mediated knockdown of TRIM24 inhibited cell proliferation, colony formation, migration, invasion and the nuclear accumulation of β-catenin, and it delayed cell cycle progression and induced apoptosis. In addition, the expression of TRIM24 was positively correlated with that of β-catenin in GC tissues. TRIM24 knockdown decreased the expression of Wnt/β-catenin target genes, whereas the activation of Wnt/β-catenin signaling by lithium chloride reversed the effects of TRIM24 knockdown. Taken together, these data suggested that TRIM24 was a prognostic or potential therapeutic target for patients with GC and was important in the activation of the Wnt/β-catenin pathway during the progression of GC.


Journal of Experimental & Clinical Cancer Research | 2017

Regulation of TRIM24 by miR-511 modulates cell proliferation in gastric cancer.

Ziling Fang; Ling Zhang; Quan Liao; Yi Wang; Feng Yu; Miao Feng; Xiaojun Xiang; Jianping Xiong

BackgroundIncreasing evidence highlights the important roles of tripartite motif containing 24 (TRIM24) in tumor initiation and malignant progression in many tumors, including gastric cancer (GC). Although TRIM24 expression is remarkably upregulated during GC carcinogenesis, the molecular mechanisms underlying TRIM24 dysregulation remain unexplored.MethodsIn this study, miRNA target prediction tools were applied to explore miRNAs that potentially target TRIM24. Western blot and quantitative reverse-transcriptase PCR (qRT-PCR) were performed to detected TRIM24 and miR-511 expression in GC tissues and cell lines. Dual-luciferase reporter assay was utilized to validate if TRIM24 is a direct target gene of miR-511. CCK-8 assay, cell colony formation assay, EdU incorporation assay and cell cycle analysis were performed to determine whether miR-511-mediated regulation of TRIM24 could affect GC progression.ResultsIn our study, miR-511 was found to be downregulated in GC and an inverse correlation was observed between TRIM24 and miR-511 expression in primary GC tissues and cell lines. Dual-luciferase reporter assay further verified TRIM24 is a direct target of miR-511. Functional assays showed miR-511 overexpression inhibited cell growth, colony formation ability and cell cycle progression. Conversely, inhibition of endogenous miR-511 promoted these phenotypes in GC cells. Moreover, reintroduction of TRIM24 rescued miR-511-induced inhibitory effects on GC cells. Furthermore, miR-511 elicits tumor-suppressive effects through inactivating PI3K/AKT and Wnt/β-catenin pathways by suppressing TRIM24.ConclusionsOur results provide the new evidence supporting the tumor-suppressive role of miR-511 in GC by suppressing TRIM24, suggesting that this novel miR-511/TRIM24 axis is critical in the control of gastric cancer tumorigenesis.


International Journal of Molecular Medicine | 2018

miR‑21‑5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3

Jun Chen; Chao Zhou; Junhe Li; Xiaojun Xiang; Ling Zhang; Jun Deng; Jianping Xiong

Drug resistance and disease recurrence are major obstacles to the effective treatment of cancer, including gastric cancer (GC). However, the mechanisms of drug resistance remain to be fully elucidated. The present study investigated the roles of microRNA (miR)-21-5p in the doxorubicin (DOX) resistance of GC cells and the underlying mechanisms. miR-21-5p expression levels were identified to be inversely correlated with two well-known tumor suppressor genes, phosphatase and tensin homologue and tissue inhibitor of matrix metalloproteinases 3, and were upregulated in GC cell lines in proportion to their degree of resistance. Suppressing miR-21-5p expression partially sensitized SGC7901/DOX cells to DOX, suggesting that knockdown of miR-21-5p expression may be used as a therapeutic strategy to improve GC cell resistance. Importantly, increased miR-21-5p expression levels at diagnosis were correlated with clinicopathological characteristics including advanced stage and poor prognosis, further implying that a relapse of GC may be a consequence of miR-21-5p upregulation, thus providing evidence for the potential utility of miR-21-5p antagonism to sensitize GC cells to DOX chemotherapy.


Biologics: Targets & Therapy | 2017

CUL4A promotes cell invasion in gastric cancer by activating the NF-κB signaling pathway.

Yu Gong; Xiaojun Xiang; Miao Feng; Jun Chen; Ziling Fang; Jianping Xiong

Cullin 4A (CUL4A) overexpression has been reported to be involved in the carcinogenesis and progression of many malignant tumors. However, the role of CUL4A in the progression of gastric cancer (GC) remains unclear. In this study, we explored whether and how CUL4A regulates proinflammatory signaling to promote GC cell invasion. Our results showed that knockdown of CUL4A inhibited GC cell migration and invasion induced by lipopolysaccharide (LPS) stimulation. We also found that both CUL4A and nuclear factor-kappa B (NF-κB) protein expressions were enhanced by LPS stimulation in HGC27 GC cell lines. Furthermore, knockdown of CUL4A decreased the protein expression of NF-κB and mRNA expression of the downstream genes of the NF-κB pathway, such as matrix metalloproteinase (MMP) 2, MMP9, and interleukin-8. Our immunohistochemistry analysis on 50 GC tissue samples also revealed that CUL4A positively correlated with NF-κB expression. Taken together, our findings suggest that CUL4A may promote GC cell invasion by regulating the NF-κB signaling pathway and could be considered as a potential therapeutic target in patients with GC.

Collaboration


Dive into the Xiaojun Xiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Zhang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge