Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoke Feng is active.

Publication


Featured researches published by Xiaoke Feng.


Clinical & Developmental Immunology | 2013

Modulatory Effect of 1,25-Dihydroxyvitamin D3 on IL1β-Induced RANKL, OPG, TNFα, and IL-6 Expression in Human Rheumatoid Synoviocyte MH7A

Xiaoke Feng; Chengyin Lv; Fang Wang; Ke Gan; Miaojia Zhang; Wenfeng Tan

Receptor activator of nuclear factor κB ligand (RANKL) plays a crucial role in the bone erosion of rheumatoid arthritis (RA) by prompting osteoclastogenesis. Considering that 1,25(OH)2D3 has been suggested as a potent inducer of RANKL expression, it should clarify whether vitamin D supplement could result in RANKL overexpression and thereby facilitate excessive osteoclastogenesis and bone resorption in RA. Here, we investigated modulatory effect of 1,25(OH)2D3 on the expression of RANKL and its decoy receptor osteoprotegerin (OPG) in an inflammatory condition of human rheumatoid synoviocyte MH7A. MH7A cells were stimulated with IL1β and then treated with different concentrations of 1,25(OH)2D3 for 48 h. A significantly elevated OPG/RANKL ratio and markedly decreased levels of IL-6 and TNFβ mRNA expression in cells and IL-6 protein in supernatants were observed in IL1β-induced MH7A in the presence of 1,25(OH)2D3 compared with those in the absence of it. Osteoclast formation was obviously decreased when RAW264.7 cells were treated with both 1,25(OH)2D3 and IL1β. In summary, although it has a biological function to induce RANKL expression, 1,25(OH)2D3 could upregulate OPG/RANKL ratio and mediate anti-inflammatory action in an inflammatory milieu of synoviocyte, contributing to the inhibition of inflammation-induced osteoclastogenesis in RA.


Arthritis Research & Therapy | 2013

IL-29 enhances Toll-like receptor-mediated IL-6 and IL-8 production by the synovial fibroblasts from rheumatoid arthritis patients

Lingxiao Xu; Xiaoke Feng; Wenfeng Tan; Weijuan Gu; Dunming Guo; Miaojia Zhang; Fang Wang

IntroductionWe previously reported that IL-29, a newly described member of interferon (IFN) family, was overexpressed in blood and synovium of rheumatoid arthritis (RA) patients and triggered proinflammatory cytokine IL-6 and IL-8 mRNA expression in RA synovial fibroblasts (RA-FLS). This suggests that IL-29 has an important role in synovial inflammation. Toll-like receptors (TLRs) also activate RA-FLS to produce inflammatory mediators including tumor necrosis factor α (TNF-α) and IL-1β in RA-FLS. Since the TLR family plays an early role in the innate immune response and the subsequent induction of the adaptive immune response, we hypothesize that IL-29 interacts with TLRs in RA inflammation. This study aimed to investigate the effect of IL-29 on TLR-mediated proinflammatory cytokine production in RA-FLS.MethodsThe mRNA level of IL-29 receptors (IL-28Rα and IL-10R2) in RA-FLS was determined by semi-quantitative RT- PCR. IL-6 and IL-8 mRNA expressions in RA-FLS were evaluated by real-time PCR after pre-incubation with IL-29 and subsequent stimulation with peptidoglycan (PGN, TLR2 ligand), or polycytidylic acid (poly(I:C), TLR3 ligand), or lipopolysaccharide (LPS, TLR4 ligand) . The production of TLR2, 3, and 4 in RA-FLS after IL-29 stimulation was also assessed by real-time PCR and flow cytometry. IL-29 mRNA and protein expression in RA-FLS after stimulation with PGN, poly(I:C), or LPS were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively.ResultsThe IL-29 receptor complex (IL-28Rα and IL-10R2) was identified in RA-FLS. IL-29 enhanced TLR-mediated IL-6 and IL-8 expression in RA-FLS. IL-29 upregulated expression of TLR2, 3 and 4 in RA-FLS. Exposure to PGN, poly(I:C) or LPS triggered IL-29 production by RA-FLS.ConclusionsWe show for the first time that IL-29 enhances TLR-induced proinflammatory cytokine production in RA-FLS via upregulation of TLRs.


Arthritis Research & Therapy | 2012

Interleukin-29 modulates proinflammatory cytokine production in synovial inflammation of rheumatoid arthritis

Fang Wang; Lingxiao Xu; Xiaoke Feng; Dunming Guo; Wenfeng Tan; Miaojia Zhang

IntroductionThe immunoregulatory function of interleukin (IL)-29 has recently been recognized. However, little is known about the involvement of IL-29 in the pathogenesis of rheumatoid arthritis (RA). This study aimed to examine the expression profiles of IL-29 in blood, synovial fluid (SF) and synovium in RA patients and investigate the effect of IL-29 on cytokines production in RA synovial fibroblasts.MethodsThe transcript levels of IL-29 and its specific receptor IL-28Rα in peripheral blood mononuclear cells (PBMC) and synovium were determined by real-time reverse transcription-polymerase chain reaction (real-time PCR). The concentrations of IL-29 in serum and synovial fluid (SF) were quantified by enzyme-linked immunoassay (ELISA), and the correlation of serum IL-29 levels with disease activity in RA patients was investigated. Furthermore, the expression of IL-29 in RA synovium was examined by immunohistochemistry and double immunofluorescence analysis. Finally, the expression of IL-6, IL-8, IL-10, IL-17 and matrix metalloproteinase-3 (MMP-3) in synovial fibroblasts upon IL-29 stimulation was determined by real-time PCR.ResultsIL-29 and IL-28Rα mRNA expression in PBMC was significantly increased in patients with RA compared with healthy controls (HC). The serum levels of circulating IL-29 were higher in RA than those in HC. Increased IL-29 levels were detected in RA SF when compared with osteoarthritis (OA) SF. However, serum IL-29 levels showed no significant correlation with RA disease activity. IL-29 was mostly expressed in the lining region of RA synovium. Moreover, IL-29 was expressed predominately in synovial macrophages and fibroblasts. RA synovial fibroblasts exposed to IL-29 specifically upregulated IL-6, -8 and MMP-3 but downregulated IL-10.ConclusionsThe findings in the present study indicate, for the first time, that IL-29 is dysregulated in patients with RA, which may contribute to the RA pathogenesis via inducing the production of proinflammatory cytokines, chemokines or matrix metalloproteinases in synovial fibroblasts.


International Immunopharmacology | 2015

Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7.

Ke Gan; Lingxiao Xu; Xiaoke Feng; Qiande Zhang; Fang Wang; Miaojia Zhang; Wenfeng Tan

Recently, the traditional Chinese medicine Tripterygium wilfordii Hook f (TwHF) of the Celastraceae family has attracted increasing attention for its potential therapeutic application in patients with rheumatoid arthritis (RA). It is well accepted that TwHF exerts the antirheumatic activity and mainly depends on its potent anti-inflammatory property. To further explore the therapeutic potential of the well-defined TwHF-derived single compound - celastrol in RA, we study the therapeutic efficacy of celastrol on bone erosion in collagen-induced arthritis (CIA) mice and delineate its effects on osteoclast differentiation and functions in RANKL-induced osteoclast precursors RAW264.7 cell line. In CIA mice, daily injection of celastrol (beginning on day 28 after arthritis induction) markedly suppressed arthritis, and reduced bone damage in the joints as demonstrated by histology and bone micro-computed tomography (CT). The effects were accompanied by reductions of osteoclast cells in joints, serum tartrate-resistant acid phosphatase (TRAP) 5b, and expression of osteoclastic genes (Trap, Ctsk, Ctr, Mmp-9) and transcriptional factors (c-Fos, c-Jun and NFATc1). When RAW264.7 cells were treated with RANKL, celastrol inhibited the formation of TRAP+ multinucleated cells and the bone-resorbing activity in dose-dependent manners. Furthermore, celastrol reduced the RANKL-induced expression of osteoclastic genes and transcriptional factors, as well as phosphorylation of NF-kB and mitogen-activated protein kinases (MAPK). These findings show that celastrol could directly inhibit osteoclast formation and function, suggesting a novel therapeutic strategy of celastrol for managing RA, especially in preventing bone destruction.


Scientific Reports | 2015

Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression

Xiaoxuan Sun; Xiaoke Feng; Wenfeng Tan; Na Lin; Minhui Hua; Yu Wei; Fang Wang; Ningli Li; Miaojia Zhang

We previously reported adiponectin (AD) is highly expressed in the inflamed synovial joint tissue and correlates closely with progressive bone erosion in Rheumatoid arthritis (RA) patients. Here, we investigate the role of adiponectin in regulating Th17 response and the expression of receptor activator of nuclear factor-κB ligand (RANKL) in mice with CIA mice by intraarticularly injection of adiponectin into knee joints on day 17, day 20 and day 23 post first collagen immunization. The increased adiponectin expression was found in inflamed joint tissue of collagen-induced arthritis (CIA) mice. Adiponectin injection resulted in an earlier onset of arthritis, an aggravated arthritic progression, more severe synovial hyperplasia, bone erosion and osteoporosis in CIA mice. CD4+IL-17+ Th17 cells, IL-17 mRNA and RANKL mRNA expression were markedly increased in the joint tissue of adiponectin treated CIA mice. Moreover, adiponectin treatment markedly enhanced Th17 cell generation from naive CD4+ T cells in vitro, which accompanied by the high expression of Th17 transcription factor ROR-γt, and Th17 cytokine genes included IL-22 and IL-23. This study reveals a novel effect of adiponectin in exacerbating CIA progression by enhancing Th17 cell response and RANKL expression.


Clinical & Developmental Immunology | 2013

Correlation of Increased Blood Levels of GITR and GITRL with Disease Severity in Patients with Primary Sjögren’s Syndrome

Xiaoxia Gan; Xiaoke Feng; Lei Gu; Wenfeng Tan; Xiaoxuan Sun; Chengyin Lv; Miaojia Zhang

Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a type I transmembrane protein belonging to the TNFR superfamily. After activated by its ligand GITRL, GITR could influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases included rheumatoid arthritis and autoimmune thyroid disease. We previously reported that serum GITRL levels are increased in systemic lupus erythematosus (SLE) patients compared with healthy controls (HC). Here, we tested serum soluble GITR (sGITR) and GITRL levels in 41 primary Sjögrens syndrome (pSS) patients and 29 HC by ELISA and correlated sGITR and GITRL levels with clinical and laboratory variables. GITR and GITRL expression in labial salivary glands was detected by immunohistochemistry. pSS patients had significantly increased serum levels of sGITR and GITRL compared with controls (GITR: 5.66 ± 3.56 ng/mL versus 0.50 ± 0.31 ng/mL; P < 0.0001; GITRL: 6.17 ± 7.10 ng/mL versus 0.36 ± 0.28 ng/mL; P < 0.0001). Serum sGITR and GITRL levels were positively correlated with IgG (GITRL: r = 0.6084, P < 0.0001; sGITR: r = 0.6820, P < 0.0001) and ESR (GITRL: r = 0.8315, P < 0.0001; sGITR: r = 0.7448, P < 0.0001). Moreover, GITR and GITRL are readily detected in the lymphocytic foci and periductal areas of the LSGs. In contrast, the LSGs of HC subjects did not express GITR or GITRL. Our findings indicate the possible involvement of GITR-GITRL pathway in the pathogenesis of pSS. Further studies may facilitate the development of targeting this molecule pathway for the treatment of pSS.


Scientific Reports | 2016

Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5

Xiaoke Feng; Yumeng Shi; Lingxiao Xu; Qiuyue Peng; Fang Wang; Xiaoxi Wang; Wei Sun; Yan Lu; Betty P. Tsao; Miaojia Zhang; Wenfeng Tan

Receptor activator of nuclear factor κB ligand (RANKL) is critically involved in bone erosion of rheumatoid arthritis (RA). We previously reported association between younger age at onset of RA and a RANKL promoter SNP that conferred an elevated promoter activity via binding to a transcription factor SOX5. Here we study the regulation of SOX5 levels in relation to RANKL expression in RA synovial fibroblasts (SF) and the development of bone erosion in the collagen-induced arthritis (CIA) mouse. Our data indicated SOX5 levels were higher in synovium and synovial fluid from RA compared to osteoarthritis patients. Pro-inflammatory cytokines upregulated SOX5 and RANKL expression in both primary RA SF and the rheumatoid synovial fibroblast cell line, MH7A. Overexpression of SOX5 resulted in significantly increased RANKL levels, while knockdown of SOX5 resulted in diminished IL-6 mediated RANKL upregulation in MH7A cells. Chromatin immunoprecipitation (ChIP) showed approximately 3-fold enrichment of RANKL-specific DNA in anti-SOX5 immunoprecipitate in IL-6 treated MH7A cells as compared to untreated cells. Locally silencing SOX5 gene significantly diminished RANKL positive cells and bone erosion in CIA mice. These findings suggest SOX5 is an important regulator of IL-6-induced RANKL expression in RA SF.


International Immunopharmacology | 2016

Iguratimod (T-614) suppresses RANKL-induced osteoclast differentiation and migration in RAW264.7 cells via NF-κB and MAPK pathways.

Ke Gan; Leilei Yang; Lingxiao Xu; Xiaoke Feng; Qiande Zhang; Fang Wang; Wenfeng Tan; Miaojia Zhang

INTRODUCTION Iguratimod (T-614) has been confirmed as a highly efficacious and safe novel disease-modifying anti-rheumatic drug (DMARD) for rheumatoid arthritis therapy in China and Japan due to its potent anti-inflammation effect. Here, we investigate the effects of Iguratimod on osteoclast differentiation, migration and function. METHODS The effect of Iguratimod on osteoclastogenesis, migration and bone resorption were assessed by TRAP staining, transwell migration assay and osteologic discs, respectively. Relative expressions of osteoclastic related genes, chemokines and transcription factors were assessed by reverse transcription polymerase chain reaction (RT-PCR) and signaling pathways were analyzed by western blotting. RESULTS Iguratimod significantly inhibits osteoclast differentiation, migration and bone resorption in RANKL-induced RAW264.7 cell in a dose-dependent manner. The expressions of osteoclastic related genes including TRAP, CTSK and CTR were increased in RAW264.7 cell upon RANKL stimulation but were obviously suppressed in the presence of Iguratimod. RANKL induced the expression of chemokines including CCL7, CCL4 and CCL12 and osteoclastic related transcription factors of c-Fos, c-Jun and NFATc1 could be significantly inhibited by Iguratimod in a dose dependent manner. Western blotting indicated Iguratimod could suppress the activation of MAPKs and NF-κB pathway in RANKL induced osteoclastogenesis in RAW264.7. CONCLUSIONS These findings revealed a directly inhibitory role of Iguratimod on osteoclast formation and function, which is distinct from previous report, suggesting Iguratimod provide a unique therapeutic strategy for RA and especially in light of preventing bone destruction.


Mediators of Inflammation | 2016

Interleukin-29 Enhances Synovial Inflammation and Cartilage Degradation in Osteoarthritis

Lingxiao Xu; Qiuyue Peng; Wenhua Xuan; Xiaoke Feng; Xiangqing Kong; Miaojia Zhang; Wenfeng Tan; Meilang Xue; Fang Wang

We have recently shown that IL-29 was an important proinflammatory cytokine in pathogenesis of rheumatoid arthritis (RA). Inflammation also contributes to the pathogenesis of osteoarthritis (OA). The aim of this study was to investigate the effect and mechanism of IL-29 on cytokine production and cartilage degradation in OA. The mRNA levels of IL-29 and its specific receptor IL-28Ra in peripheral blood mononuclear cells (PBMCs) were significantly increased in OA patients when compared to healthy controls (HC). In the serum, IL-29 protein levels were higher in OA patients than those in HC. Immunohistochemistry revealed that both IL-29 and IL-28Ra were dramatically elevated in OA synovium compared to HC; synovial fibroblasts (FLS) and macrophages were the main IL-29-producing cells in OA synovium. Furthermore, recombinant IL-29 augmented the mRNA expression of IL-1β, IL-6, IL-8, and matrix-metalloproteinase-3 (MMP-3) in OA FLS and increased cartilage degradation when ex vivo OA cartilage explant was coincubated with OA FLS. Finally, in OA FLS, IL-29 dominantly activated MAPK and nuclear factor-κB (NF-κB), but not Jak-STAT and AKT signaling pathway as examined by western blot. In conclusion, IL-29 stimulates inflammation and cartilage degradation by OA FLS, indicating that this cytokine is likely involved in the pathogenesis of OA.


International Journal of Rheumatic Diseases | 2015

Interleukin-29 induces receptor activator of NF-κB ligand expression in fibroblast-like synoviocytes via MAPK signaling pathways

Lingxiao Xu; Xiaoke Feng; Yumeng Shi; Xiaoxi Wang; Xiangqing Kong; Miaojia Zhang; Mei Liu; Wenfeng Tan; Fang Wang

We previously reported that interleukin‐29 (IL‐29) was highly expressed in the blood and synovium of rheumatoid arthritis (RA) patients and contributed to synovial inflammation by induction of proinflammatory cytokine production. Given chronic inflammation can trigger the process of bone erosion, and receptor activator of nuclear factor‐κB ligand (RANKL) plays a crucial role in bone erosion of RA, we hypothesize that IL‐29 mediates bone erosion in RA by regulation of RANKL expression. Here, we investigated the effect of IL‐29 on RANKL expression in RA fibroblast‐like synoviocytes (FLS) and the relevant signaling pathways involved in it.

Collaboration


Dive into the Xiaoke Feng's collaboration.

Top Co-Authors

Avatar

Wenfeng Tan

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Fang Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Miaojia Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lingxiao Xu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yumeng Shi

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Mingfeng Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ke Gan

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Wenhua Xuan

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chengyin Lv

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Dunming Guo

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge