Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaolan Fan is active.

Publication


Featured researches published by Xiaolan Fan.


Oncotarget | 2015

Rapamycin preserves gut homeostasis during Drosophila aging

Xiaolan Fan; Qing Liang; Ting Lian; Qi Wu; Uma Gaur; Diyan Li; Deying Yang; Xueping Mao; Zhihua Jin; Ying Li; Mingyao Yang

Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila.


Scientific Reports | 2016

The musk chemical composition and microbiota of Chinese forest musk deer males

Diyan Li; Binlong Chen; Long Zhang; Uma Gaur; Tianyuan Ma; Hang Jie; Guijun Zhao; Nan Wu; Zhongxian Xu; Huailiang Xu; Yongfang Yao; Ting Lian; Xiaolan Fan; Deying Yang; Mingyao Yang; Qing Zhu; Jessica Satkoski Trask

Male musk deer secrete musk from the musk gland located between their naval and genitals. Unmated male forest musk deer generate a greater amount of musk than mated males, potentially allowing them to attract a greater number of females. In this study, we used gas chromatography and mass spectrometry (GC/MS) to explore musk chemical composition of the musk pods of captive mated and unmated sexually mature Chinese forest musk deer and used next-generation sequencing to intensively survey the bacterial communities within them. Analysis of the chemical composition of the musk showed that unmated males have more muscone and cholesterol. Features of the musk16S rRNA gene showed that mated Chinese forest musk deer have both a greater Shannon diversity (p < 0.01) and a greater number of estimated operational taxonomic units than unmated ones; many bacterial genera were overrepresented in unmated Chinese forest musk deer males. Members of these genera might be involved in musk odor fermentation. PICRUSt analysis revealed that metabolic pathways such as aldosterone-regulated sodium reabsorption, metabolism of terpenoids and polyketides, flavone and flavonol biosynthesis, and isoflavonoid biosynthesis were enriched in the musk of unmated Chinese forest musk deer males.


Aging (Albany NY) | 2016

LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction

Deying Yang; Ting Lian; Jianbo Tu; Uma Gaur; Xueping Mao; Xiaolan Fan; Diyan Li; Ying Li; Mingyao Yang

Dietary restriction (DR) extends lifespan in many species which is a well-known phenomenon. Long non-coding RNAs (lncRNAs) play an important role in regulation of cell senescence and important age-related signaling pathways. Here, we profiled the lncRNA and mRNA transcriptome of fruit flies at 7 day and 42 day during DR and fully-fed conditions, respectively. In general, 102 differentially expressed lncRNAs and 1406 differentially expressed coding genes were identified. Most informatively we found a large number of differentially expressed lncRNAs and their targets enriched in GO and KEGG analysis. We discovered some new aging related signaling pathways during DR, such as hippo signaling pathway-fly, phototransduction-fly and protein processing in endoplasmic reticulum etc. Novel lncRNAs XLOC_092363 and XLOC_166557 are found to be located in 10 kb upstream sequences of hairy and ems promoters, respectively. Furthermore, tissue specificity of some novel lncRNAs had been analyzed at 7 day of DR in fly head, gut and fat body. Also the silencing of lncRNA XLOC_076307 resulted in altered expression level of its targets including Gadd45 (involved in FoxO signaling pathway). Together, the results implicated many lncRNAs closely associated with dietary restriction, which could provide a resource for lncRNA in aging and age-related disease field.


Evolutionary Bioinformatics | 2015

Molecular Evolutionary Analysis of β-Defensin Peptides in Vertebrates

Jianbo Tu; Diyan Li; Qingqing Li; Long Zhang; Qing Zhu; Uma Gaur; Xiaolan Fan; Huailiang Xu; Yongfang Yao; Xiaoling Zhao; Mingyao Yang

Vertebrate β-defensins comprise an important family of antimicrobial peptides that protect organisms from a diverse spectrum of bacteria, viruses, fungi, and protozoan parasites. Previous studies have shown a marked variation in the number of β-defensins among species, but the underlying reason is unclear. To address this question, we performed comprehensive computational searches to study the intact β-defensin genes from 29 vertebrates. Phylogenetic analysis of the β-defensin genes in vertebrates identified frequent changes in the number of β-defensin genes and multiple species-specific gene gains and losses that have been occurring throughout the evolution of vertebrates. The number of intact β-defensin genes varied from 1 in the western clawed frog to 20 in cattle, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The β-defensin gene number in a species is relevant to the ever-changing microbial challenges from the environment that they inhabit. Selection pressure analysis shows there exist three amino acid sites under significant positive selection. Protein structural characteristics analysis suggests that structural diversity determines the diverse functions of β-defensins. Our study provides a new perspective on the relationships among vertebrate β-defensin gene repertoires and different survival circumstances, which helps explain how β-defensins have evolved.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016

2,5-Dimethyl-Celecoxib Extends Drosophila Life Span via a Mechanism That Requires Insulin and Target of Rapamycin Signaling

Qi Wu; Ting Lian; Xiaolan Fan; Chaochun Song; Uma Gaur; Xueping Mao; Deying Yang; Matthew D.W. Piper; Mingyao Yang

The search for antiaging drugs is a key component of gerontology research. A few drugs with positive effects on life span in model organisms have been found. Here, we report that 2,5-dimethyl-celecoxib, a derivative of the anti-inflammatory drug celecoxib, can extend Drosophila life span and delay aging by a mechanism involving insulin signaling and target of rapamycin signaling. Importantly, its positive effects were apparent when the treatment window was restricted to the beginning of life or the later half. 2,5-Dimethyl-celecoxib-induced longevity was also associated with improvements in physical activity, intestinal integrity, and increased autophagy. In addition, 2,5-dimethyl-celecoxib exhibited protective effects against several kinds of stress such as starvation and heat. The generally positive effects of 2,5-dimethyl-celecoxib on both health and life span, combined with its mode of action via evolutionarily conserved signaling pathways, indicate that it has the potential to become an effective antiaging drug.


PLOS ONE | 2017

Molecular evolutionary patterns of NAD+/Sirtuin aging signaling pathway across taxa

Uma Gaur; Jianbo Tu; Diyan Li; Yue Gao; Ting Lian; Boyuan Sun; Deying Yang; Xiaolan Fan; Mingyao Yang

A deeper understanding of the conserved molecular mechanisms in different taxa have been made possible only because of the evolutionary conservation of crucial signaling pathways. In the present study, we explored the molecular evolutionary pattern of selection signatures in 51 species for 10 genes which are important components of NAD+/Sirtuin pathway and have already been directly linked to lifespan extension in worms and mice. Selection pressure analysis using PAML program revealed that MRPS5 and PPARGC1A were under significant constraints because of their functional significance. FOXO3a also displayed strong purifying selection. All three sirtuins, which were SIRT1, SIRT2 and SIRT6, displayed a great degree of conservation between taxa, which is consistent with the previous report. A significant evolutionary constraint is seen on the anti-oxidant gene, SOD3. As expected, TP53 gene was under significant selection pressure in mammals, owing to its major role in tumor progression. Poly-ADP-ribose polymerase (PARP) genes displayed the most sites under positive selection. Further 3D structural analysis of PARP1 and PARP2 protein revealed that some of these positively selected sites caused a change in the electrostatic potential of the protein structure, which may allow a change in its interaction with other proteins and molecules ultimately leading to difference in the function. Although the functional significance of the positively selected sites could not be established in the variants databases, yet it will be interesting to see if these sites actually affect the function of PARP1 and PARP2.


Mechanisms of Ageing and Development | 2017

The growth differentiation factor 11 (GDF11) and myostatin (MSTN) in tissue specific aging.

Xiaolan Fan; Uma Gaur; Lin Sun; Deying Yang; Mingyao Yang

Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are evolutionarily conserved homologues proteins which are closely related members of the transforming growth factor β superfamily. They are often perceived to serve similar or overlapping roles. Recently, GDF11 has been identified as playing a role during aging, however there are conflicting reports as to the nature of this role. In this review, we will discuss the literature regarding functions of GDF11 and myostatin in the heart, brain, and skeletal muscle during aging. Consequently we expect to develop a deeper understanding about the function of these two proteins in organismal aging and disease.


Archive | 2018

Intestinal Homeostasis and Longevity: Drosophila Gut Feeling

Xiaolan Fan; Uma Gaur; Mingyao Yang

The association between intestinal homeostasis and life span has caught the attention of the research community worldwide. There have been multiple evidences which support the role of gut homeostasis in aging. The Drosophila gastrointestinal tract is very similar to the mammalian gut, and therefore it can directly be used as a model to understand the association between gut microbiota, immune system, and aging in humans. In current review we have discussed the importance of gut microbiota in aging. Also we have highlighted the importance of host immune system and gut aging. Since the increased microbial load in the gut activates the host immune system, the dysregulated microbiota can have direct implications in gut aging. The proliferation and renewal of intestinal stem cells can also affect gut aging. Another important aspect that we have discussed is the communication between the gut and the other organ systems which affect the overall aging process. Altogether we propose that the Drosophila gut can be a good model to improve our understanding of human gut aging.


Genesis | 2018

Gene expression patterns determine the differential numbers of dorsocentral macrochaetes between M. domestica and D. melanogaster

Qing Liang; Tingting Peng; Boyuan Sun; Jianbo Tu; Xingyi Cheng; Yuanliangzi Tian; Xiaolan Fan; Deying Yang; Uma Gaur; Mingyao Yang

The evolutionary differences in sensory bristle patterns on the thorax of dipterans are an excellent model for studying the patterns of evolutionary development. We observed that Drosophila melanogaster has two pairs of the large bristles, called macrochaetes, in the dorsocentral (DC) region of the notum, while Musca domestica retains six DC macrochaetes. To explore possible mechanism by which these two dipteran species have different numbers of DC bristles, we compared the corresponding protein sequences, the gene expression levels and the spatial expression patterns of five genes (scute, pnr, ush, hairy, and emc) for bristle development between two species. We also checked the overexpression of scute and emc in transgenic flies. The results demonstrated a strong conservation of five protein sequences between these two species. The mRNA expression of the five genes differed significantly between D. melanogaster and M. domestica. The gene expression patterns exhibited a species‐specific pattern during the larval development stage. It suggests that the function of these genes has been conserved in regulating the development of macrocheates between housefly and fruit fly, whereas the gene expression levels, especially spatial expression patterns lead to species‐specificity in DC bristles.


Genomics | 2017

Genetic diversity and natural selection in wild fruit flies revealed by whole-genome resequencing

Ting Lian; Diyan Li; Xinxin Tan; Tiandong Che; Zhongxian Xu; Xiaolan Fan; Nan Wu; Long Zhang; Uma Gaur; Boyuan Sun; Mingyao Yang

We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.

Collaboration


Dive into the Xiaolan Fan's collaboration.

Top Co-Authors

Avatar

Mingyao Yang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Uma Gaur

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Deying Yang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ting Lian

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Diyan Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianbo Tu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Boyuan Sun

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qi Wu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xueping Mao

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Long Zhang

China West Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge