Xiaoling Jia
Beihang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoling Jia.
Biomaterials | 2013
Hong Zhang; Xiaoling Jia; Fengxuan Han; Jin Zhao; Yunhui Zhao; Yubo Fan; Xiaoyan Yuan
Tissue engineering of small-diameter blood vessels is still challenging because of restenosis and burst. To prevent thrombosis, rapid endothelialization along the lumen of grafts is intended, followed by proliferation of vascular smooth muscle cells (VSMCs) around the exterior for compliance. To this goal, two modified coaxial electrospinning techniques were developed to encapsulate vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGF), respectively, to regulate proliferation of vascular endothelial cells (VECs) and VSMCs. Release profiles, in vitro cell proliferation and in vivo implantation of double-layered electrospun membranes were investigated, and what made it special was the electrospun membranes were composed of chitosan hydrogel/poly(ethylene glycol)-b-poly(L-lactide-co-caprolactone) (PELCL) electrospun membrane loaded with VEGF as the inner layer and emulsion/PELCL electrospun membrane-loaded PDGF as the outer. It was found that dual-release of VEGF and PDGF could accelerate VEC proliferation in the first 6 days, and modulate slow VSMC proliferation in the initial 3 days whereas generate rapid proliferation after day 6, which is of great benefit to blood vessel regeneration. Four weeks of in vivo replacement of rabbit carotid artery demonstrated that VECs and VSMCs developed on the lumen and exterior of vascular grafts, respectively, and no thrombus or burst appeared. It was concluded that dual-delivery of VEGF and PDGF by the modified electrospun membranes could facilitate revascularization.
Journal of Biomechanics | 2010
Ke Bai; Yan Huang; Xiaoling Jia; Yubo Fan; Wen Wang
Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10-15 dyn/cm(2) over 24hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24hr, and increased the magnitude of the shear stress from 10 dyn/cm(2) to 15, 20 and 25 dyn/cm(2). We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24hr of shear stimulation was largely abolished if we extended the shear stimulation to 48hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10-15 dyn/cm(2) to 20-25 dyn/cm(2) in 24hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.
Archives of Medical Research | 2010
Yan Huang; Xiaoling Jia; Ke Bai; Xianghui Gong; Yubo Fan
BACKGROUND AND AIMS Bone marrow mesenchymal stem cells (BMSCs) are a potential source of material for the construction of tissue-engineered cardiac grafts because of their potential to transdifferentiate into cardiomyocytes after chemical treatment or co-culture with cardiomyocytes. Recent evidence has shown that mechanical loads could regulate the BMSC differentiation into osteoblasts and endothelial cells through various signaling pathways. We investigated whether fluid shear stress (FSS), which is a mechanical load generated by fluid flow, can regulate rat BMSC (rBMSC) differentiation into cardiomyocytes. METHODS rBMSCs were isolated from marrow of rat femur and tibia using density gradient centrifugation combined with adhesion method and identified with surface marker, proliferation character and differentiation potential in vitro. Cultured rBMSCs with or without 5-azacytidine (5-aza) treatment were exposed to laminar shear stress with a parallel plate-type device and analyzed by RT-PCR, immunocytochemistry, FACS and Western-blotting for the cardiomyogenic differentiation. RESULTS Appropriate FSS treatment alone induced cardiomyogenic differentiation of rBMSCs, as confirmed by the expression of cardiomyocyte-related markers at both mRNA and protein levels. Furthermore, when rBMSC cultures were exposed to both FSS and 5-aza, expression levels of cardiomyocyte-related markers significantly increased to a degree suggestive of a synergistic interaction. CONCLUSIONS The results demonstrate that FSS is an important factor affecting cardiomyogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.
Biomaterials | 2013
Fengxuan Han; Xiaoling Jia; Dongdong Dai; Xiaoling Yang; Jin Zhao; Yunhui Zhao; Yubo Fan; Xiaoyan Yuan
The urgent needs of functional arterial replacements for curing the vascular system diseases have been proposed for many years. However, an ideal small-diameter vascular scaffold, which is nonthrombogenic, minimizes intimal hyperplasia, matches the mechanical properties of natural vessels, and supports neovascular tissue reconstruction, is still in progress. For this purpose, we previously attempted dual-delivery of VEGF and PDGF by double-layered electrospun membranes. Here, a multilayered vascular scaffold in 1.5-mm diameter with sufficient mechanical properties was developed by electrospinning from poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL), poly(L-lactide-co-glycolide) (PLGA), poly(ε-caprolactone) (PCL) and gelatin. Spatio-temporal releases of vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGF) were specially controlled by the inner PELCL and middle PLGA layers, respectively, and the outer PCL layer contributed to the mechanical stability. Introduction of gelatin improved vascular endothelial cells adhesion at first, and loosen membrane after its degradation facilitated vascular smooth muscle cells (VSMCs) ingrowth. Cell activities indicated dual release of growth factors promoted endothelialization and inhibited VSMCs hyperproliferation. The small-diameter vascular scaffold dual-loading VEGF and PDGF could maintain patency in rabbit left common carotid artery for 8 weeks. It is concluded that the specially prepared fibrous scaffold in multilayer could benefit blood vessel reconstruction.
PLOS ONE | 2012
Yan Huang; Lisha Zheng; Xianghui Gong; Xiaoling Jia; Wei Song; Meili Liu; Yubo Fan
Mesenchymal stem cells (MSCs) are a potential source of material for the generation of tissue-engineered cardiac grafts because of their ability to transdifferentiate into cardiomyocytes after chemical treatments or co-culture with cardiomyocytes. Cardiomyocytes in the body are subjected to cyclic strain induced by the rhythmic heart beating. Whether cyclic strain could regulate rat bone marrow derived MSC (rBMSC) differentiation into cardiomyocyte-like lineage was investigated in this study. A stretching device was used to generate the cyclic strain for rBMSCs. Cardiomyogenic differentiation was evaluated using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and western-blotting. The results demonstrated that appropriate cyclic strain treatment alone could induce cardiomyogenic differentiation of rBMSCs, as confirmed by the expression of cardiomyocyte-related markers at both mRNA and protein levels. Furthermore, rBMSCs exposed to the strain stimulation expressed cardiomyocyte-related markers at a higher level than the shear stimulation. In addition, when rBMSCs were exposed to both strain and 5-azacytidine (5-aza), expression levels of cardiomyocyte-related markers significantly increased to a degree suggestive of a synergistic interaction. These results suggest that cyclic strain is an important mechanical stimulus affecting the cardiomyogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.
Journal of Biological Chemistry | 2007
Li Wu; Botao Xiao; Xiaoling Jia; Yan Zhang; Shouqin Lü; Juan Chen; Mian Long
Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.
Journal of Biomaterials Science-polymer Edition | 2011
Xiaoling Jia; Chenguang Zhao; Ping Li; Hong Zhang; Yan Huang; Hua Li; Jie Fan; Wei Feng; Xiaoyan Yuan; Yubo Fan
VEGF-loaded core/shell fibrous membranes were prepared by coaxial electrospinning with dextran (DEX) as the core component and poly(lactide-co-glycolide) (PLGA) as the shell polymer, respectively. The electrospun DEX/PLGA fibers were observed by scanning electron microscopy, transmission electron microscopy and confocal microscopy to identify the core/shell fiber structure and the protein distribution. The results of tensile tests showed that the DEX/PLGA membranes possessed lower tensile strength and higher Youngs modulus than PLGA one. The release profiles demonstrated that vascular endothelial growth factor (VEGF) release sustained for more than 28 days. Studies on cell viability and spreading demonstrated that the DEX(VEGF)/PLGA membranes positively promoted cell proliferation and cell–membrane interaction, which further testified that the processed VEGF remained bioactivities. Furthermore, the detections for the up-regulation of intercellular adhesion molecular-1 and the release of von Willebrand factor under pathological stimuli, which are related to inflammation process and thrombus formation, exhibited a normal immune response for the DEX(VEGF)/PLGA membrane. These data suggested that the VEGF-loaded fibers could be feasible in vascular tissue engineering.
Pflügers Archiv: European Journal of Physiology | 2013
Xiaoling Jia; Jingyun Yang; Wei Song; Ping Li; Xia Wang; Changdong Guan; Liu Yang; Yan Huang; Xianghui Gong; Meili Liu; Lisha Zheng; Yubo Fan
The large conductance Ca2+-activated K+ (BKCa) channel in vascular smooth muscle cell (VSMC) is an important potassium channel that can regulate vascular tone. Recent work has demonstrated that abnormalities in BKCa channel function are associated with changes in cell proliferation and the onset of vascular disease. However, until today there are rare reports to show whether this channel is involved in VSMC proliferation in response to fluid shear stress (SS). Here we investigated a possible role of BKCa channel in VSMC proliferation under laminar SS. Rat aortic VSMCs were plated in parallel-plate flow chambers and exposed to laminar SS with varied durations and magnitudes. VSMC proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA) expression and DNA synthesis. BKCa protein and gene expression was determined by flow cytometery and RT-PCR. The involvement of BKCa in SS-induced inhibition of proliferation was examined by BKCa inhibition using a BKCa specific blocker, iberiotoxin (IBTX), and by BKCa transfection in BKCa non-expressing CHO cells. The changes in [Ca2+]i were determined using a calcium-sensitive dye, fluo 3-AM. Membrane potential changes were detected with a potential-sensitive dye, DiBAC4(3). We found that laminar SS inhibited VSMC proliferation and stimulated BKCa channel expression. Furthermore, laminar SS induced an increase in [Ca2+]i and membrane hyperpolarization. Besides in VSMC, the inhibitory effect of BKCa channel activity on cell proliferation in response to SS was also confirmed in BKCa-transfected CHO cells showing a decline in proliferation. Blocking BKCa channel reversed its inhibitory effect, providing additional support for the involvement of BKCa in SS-induced proliferation reduction. Our results suggest, for the first time, that BKCa channel mediates laminar SS-induced inhibition of VSMC proliferation. This finding is important for understanding the mechanism by which SS regulates VSMC proliferation, and should be helpful in developing strategies to prevent flow-initiated vascular disease formation.
Food Chemistry | 2012
Meiliang Li; Xiaoling Jia; Jingyun Yang; Jianjun Deng; Guanghua Zhao
There are many components with different properties co-existing in food, so interactions among these components are likely to occur, thereby affecting food quality. However, relatively little information is available on such interactions. In this study, we focus on the interaction between tannic acid (TA) and soybean seed ferritin (SSF), since they co-exist in many foodstuffs, and the consequence of this interaction. As expected, TA interacts with SSF, resulting in changes in the tertiary/quaternary structure of the protein, while having no effect on its primary and secondary structure. On one hand, such interaction leads to protein association, which markedly inhibited ferritin degradation by pepsin at pH 4.0 and trypsin at pH 7.5. On the other hand, iron release was faster with TA than with ascorbic acid, and such release has a negative effect on iron supplementation. These results help to understand the interactions of food components.
Annals of Biomedical Engineering | 2010
Xin Gu; Xiaoling Jia; Jiannan Feng; Beifen Shen; Ying Huang; Shusheng Geng; Yingxun Sun; Yugang Wang; Yan Li; Mian Long
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or single-chain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.