Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaomin Lou is active.

Publication


Featured researches published by Xiaomin Lou.


Cancer Research | 2009

PTTG Overexpression Promotes Lymph Node Metastasis in Human Esophageal Squamous Cell Carcinoma

Shuang Yan; Cuiqi Zhou; Xiaomin Lou; Zefen Xiao; Hongxia Zhu; Qifeng Wang; Yihua Wang; Ning Lu; Shun He; Qimin Zhan; Siqi Liu; Ningzhi Xu

Human pituitary tumor transforming gene (PTTG) overexpression correlates with metastasis in multiple tumors, and yet its molecular mechanisms of action remain elusive. We detected PTTG overexpression in 66% (111 of 169) of primary esophageal squamous cell carcinoma (ESCC) tumor tissues by in situ hybridization. PTTG overexpression correlated with lymph node metastasis (P < 0.05). Ectopic PTTG overexpression in a representative ESCC cell line, EC9706, increased in vitro cell migration and invasion and promoted in vivo lymph node metastasis. Suppressing PTTG expression by siRNA decreased cell motility in both PTTG-HA/EC9706 and KYSE150 cells. By using mass spectrometric analysis, we identified that PTTG up-regulated S100A4 and galectin-1 secretion and down-regulated tissue inhibitor of metalloproteinase-2 secretion to the culture media. PTTG induced S100A4 and galectin-1 mRNA and protein expression as assessed by Western blot and reverse transcription-PCR. Attenuating galectin-1 expression by siRNA constrained PTTG-HA/EC9706 cell motility (P < 0.05). PTTG activated E-box transcription and induced c-Myc protein expression in EC9706 cells, which in turn may act on an E-box motif within the galectin-1 promoter. Chromatin immunoprecipitation assays further confirmed specific c-Myc binding to galectin-1 promoter. PTTG-induced galectin-1 transactivation and expression were mediated by c-Myc, and both inductions were suppressed by c-Myc RNAi cotranfection. These findings elucidate the molecular mechanisms of PTTG overexpression in promoting tumor metastasis, whereby up-regulated PTTG modulates expression and secretion of metastasis-related factors to facilitate cell motility.


Cancer Letters | 2013

A cancer/testis antigen microarray to screen autoantibody biomarkers of non-small cell lung cancer

Qiang Shan; Xiaomin Lou; Ting Xiao; Ju Zhang; Huiying Sun; Yanning Gao; Shujun Cheng; Lin Wu; Ningzhi Xu; Siqi Liu

Cancer/testis antigens (CTAs) are highly immunogenic in many tumors, especially in non-small cell lung cancer (NSCLC). A low-density protein microarray, which consisted of 72 CTAs and six non-CTAs, was used to screen for lung cancer-related autoantibodies. The CTA panel of NY-ESO-1, XAGE-1, ADAM29 and MAGEC1, had sensitivity and specificity values of 33% and 96%, respectively. When examined in a test set, this panel of markers had sensitivity and specificity values of 36% and 89%, respectively. This array of markers preferentially detected NSCLC, but did not detect breast cancer, and non-cancer lung disease.


PLOS ONE | 2013

Proteolytic Characteristics of Cathepsin D Related to the Recognition and Cleavage of Its Target Proteins

Huiying Sun; Xiaomin Lou; Qiang Shan; Ju Zhang; Xu Zhu; Jia Zhang; Yang Wang; Yingying Xie; Ningzhi Xu; Siqi Liu

Cathepsin D (CD) plays an important role in both biological and pathological processes, although the cleavage characteristics and substrate selection of CD have yet to be fully explored. We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the CD cleavage sites in bovine serum albumin (BSA). We found that the hydrophobic residues at P1 were not only a preferential factor for CD cleavage but that the hydrophobicity at P1’ also contributed to CD recognition. The concept of hydrophobic scores of neighbors (HSN) was proposed to describe the hydrophobic microenvironment of CD recognition sites. The survey of CD cleavage characteristics in several proteins suggested that the HSN was a sensitive indicator for judging the favorable sites in peptides for CD cleavage, with HSN values of 0.5–1.0 representing a likely threshold. Ovalbumin (OVA), a protein resistant to CD cleavage in its native state, was easily cleaved by CD after denaturation, and the features of the cleaved peptides were quite similar to those found in BSA, where a higher HSN value indicated greater cleavability. We further conducted two-dimensional gel electrophoresis (2DE) to find more proteins that were insensitive to CD cleavage in CD-knockdown cells. Based on an analysis of secondary and three-dimensional structures, we postulated that intact proteins with a structure consisting of all α-helices would be relatively accessible to CD cleavage.


Journal of Proteome Research | 2015

A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages.

Yinghui Zhu; Xianwei Chen; Qingfei Pan; Yang Wang; Siyuan Su; Cuicui Jiang; Yang Li; Ningzhi Xu; Lin Wu; Xiaomin Lou; Siqi Liu

Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.


Journal of Proteome Research | 2013

Quantitative Analysis of the Human AKR Family Members in Cancer Cell Lines Using the mTRAQ/MRM Approach

Shenyan Zhang; Bo Wen; Baojin Zhou; Lei Yang; Chao Cha; Shaoxing Xu; Xuemei Qiu; Q. Wang; Haidan Sun; Xiaomin Lou; Jin Zi; Yong Zhang; Liang Lin; Siqi Liu

Members of human aldo-keto reductase (AKR) superfamily have been reported to be involved in cancer progression, whereas the final conclusion is not generally accepted. Herein, we propose a quantitative method to measure human AKR proteins in cells using mTRAQ-based multiple reaction monitoring (MRM). AKR peptides with multiple transitions were carefully selected upon tryptic digestion of the recombinant AKR proteins, while AKR proteins were identified by SDS-PAGE fractionation coupled with LC-MS/MS. Utilizing mTRAQ triplex labeling to produce the derivative peptides, calibration curves were generated using the mixed lysate as background, and no significantly different quantification of AKRs was elicited from the two sets of calibration curves under the mixed and single lysate as background. We employed this approach to quantitatively determine the 6 AKR proteins, AKR1A1, AKR1B1, AKR1B10, AKR1C1/C2, AKR1C3, and AKR1C4, in 7 different cancer cell lines and for the first time to obtain the absolute quantities of all the AKR proteins in each cell. The cluster plot revealed that AKR1A and AKR1B were widely distributed in most cancer cells with relatively stable abundances, whereas AKR1Cs were unevenly detected among these cells with diverse dynamic abundances. The AKR quantitative distribution in different cancer cells, therefore, may assist further exploration toward how the AKR proteins are involved in tumorigenesis.


Journal of Proteome Research | 2015

Biomarker Discovery and Verification of Esophageal Squamous Cell Carcinoma Using Integration of SWATH/MRM

Guixue Hou; Xiaomin Lou; Yulin Sun; Shaohang Xu; Jin Zi; Q. Wang; Baojin Zhou; Bo Han; Lin Wu; Xiaohang Zhao; Liang Lin; Siqi Liu

We propose an efficient integration of SWATH with MRM for biomarker discovery and verification when the corresponding ion library is well established. We strictly controlled the false positive rate associated with SWATH MS signals and carefully selected the target peptides coupled with SWATH and MRM. We collected 10 samples of esophageal squamous cell carcinoma (ESCC) tissues paired with tumors and adjacent regions and quantified 1758 unique proteins with FDR 1% at protein level using SWATH, in which 467 proteins were abundance-dependent with ESCC. After carefully evaluating the SWATH MS signals of the up-regulated proteins, we selected 120 proteins for MRM verification. MRM analysis of the pooled and individual esophageal tissues resulted in 116 proteins that exhibited similar abundance response modes to ESCC that were acquired with SWATH. Because the ESCC-related proteins consisted of a high percentile of secreted proteins, we conducted the MRM assay on patient sera that were collected from pre- and postoperation. Of the 116 target proteins, 42 were identified in the ESCC sera, including 11 with lowered abundances postoperation. Coupling SWATH and MRM is thus feasible and efficient for the discovery and verification of cancer-related protein biomarkers.


Journal of Proteome Research | 2014

Omics evidence: single nucleotide variants transmissions on chromosome 20 in liver cancer cell lines.

Q. Wang; Bo Wen; Tong Wang; Zhongwei Xu; Xuefei Yin; Shaohang Xu; Zhe Ren; Guixue Hou; Ruo Zhou; Haiyi Zhao; Jin Zi; Shenyan Zhang; Huan Gao; Xiaomin Lou; Haidan Sun; Qiang Feng; Cheng Chang; Peibin Qin; Chengpu Zhang; Ning Li; Yunping Zhu; Wei Gu; Jiayong Zhong; Gong Zhang; Pengyuan Yang; Guoquan Yan; Huali Shen; Xiaohui Liu; Haojie Lu; Fan Zhong

Cancer genomics unveils many cancer-related mutations, including some chromosome 20 (Chr.20) genes. The mutated messages have been found in the corresponding mRNAs; however, whether they could be translated to proteins still requires more evidence. Herein, we proposed a transomics strategy to profile the expression status of human Chr.20 genes (555 in Ensembl v72). The data of transcriptome and translatome (the mRNAs bound with ribosome, translating mRNAs) revealed that ∼80% of the coding genes on Chr.20 were detected with mRNA signals in three liver cancer cell lines, whereas of the proteome identified, only ∼45% of the Chr.20 coding genes were detected. The high amount of overlapping of identified genes in mRNA and RNC-mRNA (ribosome nascent-chain complex-bound mRNAs, translating mRNAs) and the consistent distribution of the abundance averages of mRNA and RNC-mRNA along the Chr.20 subregions in three liver cancer cell lines indicate that the mRNA information is efficiently transmitted from transcriptional to translational stage, qualitatively and quantitatively. Of the 457 genes identified in mRNAs and RNC-mRNA, 136 were found to contain SNVs with 213 sites, and >40% of these SNVs existed only in metastatic cell lines, suggesting them as the metastasis-related SNVs. Proteomics analysis showed that 16 genes with 20 SNV sites were detected with reliable MS/MS signals, and some SNVs were further validated by the MRM approach. With the integration of the omics data at the three expression phases, therefore, we are able to achieve the overall view of the gene expression of Chr.20, which is constructive in understanding the potential trend of encoding genes in a cell line and exploration of a new type of markers related to cancers.


Journal of Proteome Research | 2013

Qualitative and Quantitative Expression Status of the Human Chromosome 20 Genes in Cancer Tissues and the Representative Cell Lines

Q. Wang; Bo Wen; Guang-Rong Yan; Junying Wei; Liqi Xie; Shaohang Xu; Dahai Jiang; Tingyou Wang; Liang Lin; Jin Zi; Ju Zhang; Ruo Zhou; Haiyi Zhao; Zhe Ren; Nengrong Qu; Xiaomin Lou; Haidan Sun; Chaoqin Du; Chuangbin Chen; Shenyan Zhang; Fengji Tan; Youqi Xian; Zhibo Gao; Minghui He; Longyun Chen; Xiaohang Zhao; Ping Xu; Yunping Zhu; Xing-Feng Yin; Huali Shen

Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.


Journal of Proteome Research | 2014

Chromosome-8-Coded Proteome of Chinese Chromosome Proteome Data Set (CCPD) 2.0 with Partial Immunohistochemical Verifications

Yang Liu; Wantao Ying; Zhe Ren; Wei Gu; Yang Zhang; Guoquan Yan; Pengyuan Yang; Yinkun Liu; Xuefei Yin; Cheng Chang; Jing Jiang; Fengxu Fan; Chengpu Zhang; Ping Xu; Q. Wang; Bo Wen; Liang Lin; Tingyou Wang; Chaoqin Du; Jiayong Zhong; Tong Wang; Qing-Yu He; Xiaohong Qian; Xiaomin Lou; Gong Zhang; Fan Zhong

We upgraded the preliminary CCPD 1.0 to CCPD 2.0 using the latest deep-profiling proteome (CCPD 2013) of three hepatocellular carcinoma (HCC) cell lines, namely, Hep3B, MHCC97H, and HCCLM3 (ProteomeXchange identifiers: PXD000529, PXD000533, and PXD000535). CCPD 2.0 totally covered 63.6% (438/689) of Chr. 8-coded proteins and 62.6% (439/701) of Chr. 8-coded protein-coding genes. Interestingly, we found that the missing proteins exhibited a tendency to form a cluster region in chromosomes, such as two β-defensins clusters in Chr. 8, caused perhaps by their inflammation-related features. For the 41 Chr. 8-coded proteins being weakly or barely identified previously, we have performed an immunohistochemical (IHC) verification in 30 pairs of carcinoma/para-carcinoma HCC and 20 noncancerous liver tissues and confirmed their expressional evidence and occurrence proportions in tissue samples. We also verified 13 Chr. 8-coded HCC tumorigenesis-associated depleting or deficient proteins reported in CCPD 1.0 using IHC and screened 16 positive and 24 negative HCC metastatic potential-correlated proteins from large-scale label-free proteome quantitation data of CCPD 2013. Our results suggest that the selection of proper samples and the methodology to look for targeted missing proteins should be carefully considered in further verifications for the remaining Chr. 8-coded proteins.


Cancer Letters | 2012

BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21CIP1 pathway

Ju Zhang; Xiaomin Lou; Shangbin Yang; Shun He; Lei Yang; Mei Liu; Hongxia Zhu; Qiang Shan; Siyuan Su; Qimin Zhan; Ningzhi Xu; Siqi Liu

Suppression of c-Myc is likely to induce cellular senescence in many tumors with unclear mechanisms. A proteomics survey indicated that high levels of BCL2-associated athanogene 2 (BAG2) were found in response to c-Myc repression in TRE293 cells. This observation led to the investigation into the role of BAG2 in c-Myc-induced senescence. The association of the c-Myc/SP1 complex with the BAG2 promoter verified the role of c-Myc/SP1 in regulating BAG2 transcription. Furthermore, high levels of BAG2 were found to induce p21(CIP1)-dependent senescence and subsequent carcinogenetic arrest, suggesting its possible role as an indirect activator of the p21(CIP1) pathway.

Collaboration


Dive into the Xiaomin Lou's collaboration.

Top Co-Authors

Avatar

Siqi Liu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Guixue Hou

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jin Zi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ju Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Ningzhi Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Q. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lin Wu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Shenyan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Yingying Xie

Beijing Institute of Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge