Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoming Wen is active.

Publication


Featured researches published by Xiaoming Wen.


Journal of Materials Chemistry C | 2016

Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites

Xiaoming Wen; Yu Feng; Shujuan Huang; Fuzhi Huang; Yi-Bing Cheng; Martin A. Green; Anita Ho-Baillie

Organic–inorganic perovskite solar cells have attracted huge research interest due to rapid improvement in device performance showing great potential to be the next generation flexible solar cells. Unique defect properties in perovskite have been considered as the possible mechanism for the superior performance, and closely relevant to the effects of hysteresis and light soaking. To date, the quantitative correlation and in-depth understanding of defects in organic–inorganic perovskite are still lacking although extensive investigation have been undertaken. Here we study defect trapping states and carrier recombination dynamics in organic–inorganic halide perovskites. At low excitation the photoluminescence (PL) intensity exhibits a super-linear increase with increasing excitation, due to the slow depopulation rate of the defect states. The steady state and time-resolved photoluminescence (PL) carried out in this work reveal that the carrier recombination dynamics is ultimately correlated with both the defect density and the relaxation rate of the carriers in defects. A model is established for the relationship between the properties of the defect trapping state and steady state PL intensity. Two key parameters, (i) the ratio of the trap-state density to the depopulation rate of trapped states and (ii) ratio of the maximum density of covalence band electrons to the trapping rate, can be extracted from the model based on the excitation dependent steady state PL. This work demonstrates that the properties of defect trapping states are closely related to the fabrication technique, and suggests that the organic–inorganic halide perovskite is partly defect-tolerant.


Journal of Physical Chemistry Letters | 2014

Morphology and Carrier Extraction Study of Organic–Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy

Xiaoming Wen; Rui Sheng; Anita Ho-Baillie; Aleš Benda; Sanghun Woo; Qingshan Ma; Shujuan Huang; Martin A. Green

The past two years have seen the uniquely rapid emergence of a new class of solar-cell-based on mixed organic-inorganic halide perovskite. In this work, we demonstrate a promising technique for studying the morphology of perovskite and its impact on carrier extraction by carrier transport layer using one-photon and two-photon fluorescence imaging in conjunction with time-resolved photoluminescence. This technique is not only effective in separating surface and bulk effects but it also allows the determination of lifetimes in localized regions and local carrier extraction efficiency. The difference in sensitivities of transport materials to grain boundaries and film uniformity is highlighted in this study. It is shown that the PCBM fabricated in this work is more sensitive to film nonuniformity, whereas spiro-OMeTAD is more sensitive to grain boundaries in terms of effective carrier extraction.


Journal of Physical Chemistry Letters | 2016

BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity

Hui Ling Tan; Xiaoming Wen; Rose Amal; Yun Hau Ng

The {010} and {110} crystal facets of monoclinic bismuth vanadate (m-BiVO4) has been demonstrated to be the active reduction and oxidation sites, respectively. Here, we show using dual-faceted m-BiVO4 with distinctly different dominant exposed facets, one which is {010}-dominant and the other {110}-dominant, contrary to prediction, the former m-BiVO4 exhibits superior photooxidation activities. The population of photogenerated electrons and holes on the surface are revealed to be proportional to the respective surface areas of {010} and {110} exposed on m-BiVO4, as evidenced by steady-state photoluminescence (PL) measurements in the presence of charge scavengers. The better photoactivity of {010}-dominant m-BiVO4 is attributed to prompt electron transfer facilitated by the presence of more photogenerated electrons on the larger {010} surface. Additionally, the greater extent of electron trapping in {110}-dominant m-BiVO4 also deteriorates its photoactivity by inducing electron-hole pair recombination.


Journal of Materials Chemistry C | 2014

Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites

Pyng Yu; Xiaoming Wen; Yon-Rui Toh; Yu-Chieh Lee; Kuo-Yen Huang; Shujuan Huang; Santosh Shrestha; Gavin Conibeer; Jau Tang

Carbon nanodots (CNDs) have emerged as fascinating materials with exceptional electronic and optical properties, and thus they offer many promising applications in photovoltaics and photocatalysis. In this paper we investigate electron transfer in nanocomposites of CNDs–graphene oxide (GO), –multi-walled carbon nanotubes (MWNTs) and –TiO2 nanoparticles without linker molecules, using steady state and time-resolved spectroscopy. Significant fluorescence quenching was observed in the CND–GO system, and it is attributed to the ultrafast electron transfer from CNDs to GO with a time constant of 400 fs. In comparison, carbon nanotubes result in static quenching of fluorescence in CNDs. No charge transfer was observed in both CND–MWNT and CND–TiO2 nanocomposites. This finding suggests that the CND–GO nanocomposite can be an excellent candidate for hot carrier solar cells due to the effective carrier extraction, broad spectral absorption, weak electron–phonon scattering, and thus a slow cooling rate for hot carriers.


Nature Communications | 2017

Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

Jianfeng Yang; Xiaoming Wen; Hongze Xia; Rui Sheng; Qingshan Ma; Jincheol Kim; Patrick C. Tapping; Takaaki Harada; Tak W. Kee; Fuzhi Huang; Yi-Bing Cheng; Martin A. Green; Anita Ho-Baillie; Shujuan Huang; Santosh Shrestha; Robert Patterson; Gavin Conibeer

The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials.


ACS Applied Materials & Interfaces | 2015

Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol–Gel and Selenization Process

Fangyang Liu; Fangqin Zeng; Ning Song; Liangxing Jiang; Zili Han; Zhenghua Su; Chang Yan; Xiaoming Wen; Xiaojing Hao; Yexiang Liu

A facile sol-gel and selenization process has been demonstrated to fabricate high-quality single-phase earth abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaic absorbers. The structure and band gap of the fabricated CZTSSe can be readily tuned by varying the [S]/([S] + [Se]) ratios via selenization condition control. The effects of [S]/([S] + [Se]) ratio on device performance have been presented. The best device shows 8.25% total area efficiency without antireflection coating. Low fill factor is the main limitation for the current device efficiency compared to record efficiency device due to high series resistance and interface recombination. By improving film uniformity, eliminating voids, and reducing the Mo(S,Se)2 interfacial layer, a further boost of the device efficiency is expected, enabling the proposed process for fabricating one of the most promising candidates for kesterite solar cells.


Journal of Materials Chemistry C | 2014

Ultrafast electron transfer in the nanocomposite of the graphene oxide–Au nanocluster with graphene oxide as a donor

Xiaoming Wen; Pyng Yu; Yon-Rui Toh; Yu-Chieh Lee; Kuo-Yen Huang; Shujuan Huang; Santosh Shrestha; Gavin Conibeer; Jau Tang

Graphene oxide has been extensively investigated as an electron acceptor due to its exceptional electronic and optical properties. Here we report an unusual ultrafast electron transfer occurring in the nanocomposites of Au nanocluster (Au NC)–graphene oxide (GO) in which GO acts as an electron donor. An ultrafast electron transfer is corroborated from the excited states of graphene oxide into the highest occupied molecular orbital (HOMO) of Au NCs. It is found that the electron transfer rate is significantly higher in Au10–GO nanocomposites (4.17 × 1012 s−1) than that in Au25–GO (0.49 × 1012 s−1) due to a larger energy difference and smaller sized ligands. This finding suggests that graphene oxide–Au nanocluster nanocomposites can be very useful to construct novel nanostructures with enhanced visible light photovoltaic, photonic and photo-catalytic activities.


Scientific Reports | 2015

Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals

Xiaoming Wen; Pengfei Zhang; Trevor A. Smith; Rebecca J. Anthony; Uwe R. Kortshagen; Pyng Yu; Yu Feng; Santosh Shrestha; Gavin Coniber; Shujuan Huang

Luminescent silicon nanocrystals (Si NCs) have attracted tremendous research interest. Their size dependent photoluminescence (PL) shows great promise in various optoelectronic and biomedical applications and devices. However, it remains unclear why the exciton emission is limited to energy below 2.1 eV, no matter how small the nanocrystal is. Here we interpret a nanosecond transient yellow emission band at 590 nm (2.1 eV) as a critical limit of the wavelength tunability in colloidal silicon nanocrystals. In the “large size” regime (d > ~3 nm), quantum confinement dominantly determines the PL wavelength and thus the PL peak blue shifts upon decreasing the Si NC size. In the “small size” regime (d < ~2 nm) the effect of the yellow band overwhelms the effect of quantum confinement with distinctly increased nonradiative trapping. As a consequence, the photoluminescence peak does not exhibit any additional blue shift and the quantum yield drops abruptly with further decreasing the size of the Si NCs. This finding confirms that the PL originating from the quantum confined core states can only exist in the red/near infrared with energy below 2.1 eV; while the blue/green PL originates from surface related states and exhibits nanosecond transition.


RSC Advances | 2015

Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode

Peng Wang; Xiaoming Wen; Rose Amal; Yun Hau Ng

Visible light-induced photocurrent generation and photoelectrochemical stability of p-type Cu2O–CuO photocathodes are improved significantly upon incorporating an interlayer of TiO2 between Cu2O and CuO. The TiO2 layer hinders the electron conduction at the semiconductor–electrolyte interface (improved stability) as well as promoting electron transfer from Cu2O to CuO (increased photocurrent). Upon visible light illumination, the optimised multilayer Cu2O–TiO2–CuO heterojunction thin film yields a photocurrent of 2.4 mA cm−2 and retains 75% of its photoactivity over the measurement period. By comparison, the unmodified Cu2O–CuO generates a photocurrent of 1.3 mA cm−2 with photoactivity retention of only 32% after prolonged illumination. Wavelength-dependent incident photon-to-current efficiency (IPCE) reveals a considerable enhancement over the excitation region of Cu2O (400–560 nm). Transient fluorescence decay analysis suggests the promotion of electron transfer from Cu2O to CuO through TiO2. As a result, both photoactivity and photochemical stability of the photocathodes are improved.


Nanotechnology | 2008

Suppression of the internal electric field effects in ZnO/Zn0.7Mg0.3O quantum wells by ion-implantation induced intermixing

Jeffrey A. Davis; Lap Van Dao; Xiaoming Wen; C Ticknor; Peter Hannaford; Victoria A Coleman; Hoe Hark Tan; Chennupati Jagadish; Kazuto Koike; Shigehiko Sasa; Masataka Inoue; Mitsuaki Yano

Strong suppression of the effects caused by the internal electric field in ZnO/ZnMgO quantum wells following ion-implantation and rapid thermal annealing, is revealed by photoluminescence, time-resolved photoluminescence, and band structure calculations. The implantation and annealing induces Zn/Mg intermixing, resulting in graded quantum well interfaces. This reduces the quantum-confined Stark shift and increases electron-hole wavefunction overlap, which significantly reduces the exciton lifetime and increases the oscillator strength.

Collaboration


Dive into the Xiaoming Wen's collaboration.

Top Co-Authors

Avatar

Shujuan Huang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Gavin Conibeer

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Santosh Shrestha

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin A. Green

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Ho-Baillie

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Lap Van Dao

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Hannaford

Swinburne University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge