Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoping Diao is active.

Publication


Featured researches published by Xiaoping Diao.


Chemosphere | 2016

Oxidative stress, DNA damage and antioxidant enzyme activities in the pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation.

Yuhu Li; Lin Wei; Jiangrong Cao; Liguo Qiu; Xiu Jiang; Ping Li; Qinqin Song; Hailong Zhou; Qian Han; Xiaoping Diao

To evaluate the genotoxic and physiological effects of acute hypoxia on the pacific white shrimp (L. vannamei), shrimps were treated firstly with three dissolved oxygen levels 6.5 ppm (control), 3.0 ppm and 1.5 ppm for 24 h, respectively, and then reoxygenated (6.5 ppm) for 24 h. The changes of superoxide dismutase (SOD) activity, glutathione peroxidases (GPX) activity, malondialdehyde (MDA) concentration and DNA damage in the tissues of gill, hepatopancreas and hemolymph were examined during the period of hypoxia and reoxygenation. The results indicated SOD activity, GPX activity, MDA concentration and DNA damage all increased basically compared with the control during the period of hypoxia except for MDA concentrations in the gill at 12 h and 24 h hypoxia (3.0 ppm), and these parameters were recovered to some degree during the period of reoxygenation. Moreover, the comet assays in the tissues of gill and hepatopancreas showed an obvious time- and dose-dependent response to hypoxia, which indicated comet assay in the two tissues could be used as sensitive biomarker to detect the occurrence of hypoxia. We conclude that acute hypoxia can induce oxidative stress, DNA damage and lipid peroxidation in the tissues of gill, hepatopancreas and hemolymph of L. vannamei and the DNA damage may come from hypoxia-induced oxidative stress.


Toxicology Mechanisms and Methods | 2010

Toxicology mechanism of the persistent organic pollutants (POPs) in fish through AhR pathway

Hailong Zhou; Huifeng Wu; Chunyang Liao; Xiaoping Diao; Jiping Zhen; Linlin Chen; Qinzhao Xue

With the development of industry and agriculture, the cases of cancer and tumor have been increasing gradually in the last 30 years, and quite a few cases are caused by persistent organic pollutants (POPs), some of them belonging to environmental endocrine disruptors, and they have become ubiquitous in the environment, especially in the aquatic ecosystem; so this issue has aroused the extensive attention of the world. The mechanism of POPs toxicology is very complicated, but it is mainly mediated by the aryl hydrocarbon receptor (AhR) pathway in fish. In order to gain a comprehensive understanding of the AhR pathway, the present paper focuses on reviewing it from four major steps, including formation of cytosolic complex, translocation of AhR, heterodimerization of AhR, and induction of CYP1A. This study summarized the isoform numbers of AhR pathway genes and the expression patterns in the regulation process of POPs toxicology in zebrafish.


Marine Pollution Bulletin | 2015

Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China

Ping Li; Jia Cao; Xiaoping Diao; Baihua Wang; Hailong Zhou; Qian Han; Pengfei Zheng; Yuhu Li

The occurrence of 14 polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency was investigated in surface seawater of Yangpu Bay, China in November 2013 (winter) and May 2014 (summer). Seventy-two samples were collected from 12 sampling sites. The total concentrations of PAHs in Yangpu Bay showed obvious variations in different seasons, which varied from 582.8 to 2208.3 ng L(-1) in winter and 952.4 to 1201.7 ng L(-1) in summer, respectively. Two-ring PAHs accounted for more than 91.6% of total PAHs in winter, and three-ring PAHs were dominant with 81.6% of total PAHs in summer. Molecular indices analyses indicated that the main source of PAHs in Yangpu Bay could be petrogenic contamination. The ecological risk assessment by Risk quotients (RQNCs and RQMPCs) showed a potential ecological risk of PAHs in Yangpu Bay, indicating a close attention should be paid to pollution of PAHs in the coastal area of Yangpu.


Chemosphere | 2010

Molecular phylogenies and evolutionary behavior of AhR (aryl hydrocarbon receptor) pathway genes in aquatic animals: Implications for the toxicology mechanism of some persistent organic pollutants (POPs)

Hailong Zhou; Ying Qu; Huifeng Wu; Chunyang Liao; Jiping Zheng; Xiaoping Diao; Qinzhao Xue

Phylogenetic analysis of AhR pathway genes and their evolutionary rate variations were studied on aquatic animals. The gene sequences for the proteins involved in this pathway were obtained from four major phylogenetic groups, including bivalvia, amphibian, teleostei and mammalia. These genes were distributed under four major steps of toxicology regulation: formation of cytosolic complex, translocation of AhR, heterodimerization of AhR and induction of CYP1A. The NJ, MP, and ML algorithm were used on protein coding DNA sequences to deduce the evolutionary relationship for the respective AhR pathway gene among different aquatic animals. The rate of non-synonymous nucleotide substitutions per non-synonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clade of the respective phylogenetic tree for each AhR pathway gene. The phylogenetic analysis suggests that evolutionary pattern of AhR pathway genes in aquatic animals is characterized mainly through gene duplication events or alterative splicing. The d(N) values indicate that all AhR pathway genes are well conserved in aquatic animals, except for CYP1A gene. Furthermore, compare with other aquatic animals, the d(N) value indicates that AhR pathway genes of fish are less conserved, and these genes likely go through an adaptive evolution within aquatic animals.


Toxicology Letters | 2016

Toxic effects of male Perna viridis gonad exposed to BaP, DDT and their mixture: A metabolomic and proteomic study of the underlying mechanism.

Qinqin Song; Pengfei Zheng; Liguo Qiu; Xiu Jiang; Hongwei Zhao; Hailong Zhou; Qian Han; Xiaoping Diao

Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity.


Marine Pollution Bulletin | 2015

Concentration distribution and potential health risk of heavy metals in Mactra veneriformis from Bohai Bay, China

Yuhu Li; Hui Liu; Hailong Zhou; Wandong Ma; Qian Han; Xiaoping Diao; Qinzhao Xue

To investigate the pollution level and evaluate the potential health risks of heavy metals, the concentrations of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), and lead (Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 198 clams (Mactra veneriformis) collected from 11 sites of the Bohai Bay. The results showed that heavy metal concentrations in the clams were different at different sites (p<0.05). Mn was dominant with a percentage of 22.08-77.03% in heavy metals, followed by Zn with 12.66-57.11%, and the concentration of Pb was the lowest with 0.45-1.04%. The potential health risk to consumers was evaluated by the target hazard quotient (THQ) and the maximum daily consumption rate (CRmax). The results indicated that the THQs of Co were the highest with the values of 1.125, 1.665, and 1.144 at three sections; the values of other individual metals were <1, which indicated that consumption of clams from the study areas caused health risks due to Co. Moreover, the CRmax values also indicated the potential health risk caused by Co in clams consumed in this area. Pearson correlation analysis and principal component analysis (PCA) indicated that there were significantly positive or negative correlations between the heavy metals (p<0.05), and the studied metals were divided into four groups. The results indicated that the concentrations of heavy metals in clams were affected not only by pollution sources but also by the characteristics of clams that could absorb selectively and accumulate special metals. This study offers important information on the pollution levels of heavy metals in clams and warns consumers of the health risks associated with the consumption of clams in the area.


Aquatic Toxicology | 2016

Proteomic and metabolomic analysis on the toxicological effects of Benzo[a]pyrene in pearl oyster Pinctada martensii.

Hao Chen; Qinqin Song; Xiaoping Diao; Hailong Zhou

Benzo[a]pyrene (BaP) is one of the typical toxic polycyclic aromatic hydrocarbons (PAHs) that are widely present in marine environment. BaP has diverse toxic effects, including teratogenic, carcinogenic, mutagenic effects and so on, in various organisms. In this work, we focused on the differential proteomic and metabolomic responses in the digestive gland of pearl oyster Pinctada martensii exposed to two doses of BaP (1 and 10μg/L). Metabolic responses revealed that the high dose of BaP (10μg/L) mainly caused disturbances in osmotic regulation and energy metabolism in the digestive gland. Proteomic responses indicated that both doses of BaP induced disturbances in energy metabolism, cytoskeleton, cell injury, oxidative stress and signal transduction based on the differential proteomic biomarkers. Overall, these results demonstrated a number of potential biomarkers that were characterized by an integrated proteomic and metabolomic approach and provided a useful insight into the toxicological effects on pearl oyster P. martensii.


Marine Pollution Bulletin | 2015

Spatial and temporal distribution and risk assessment of polycyclic aromatic hydrocarbons in surface seawater from the Haikou Bay, China.

Yuhu Li; Ping Li; Wandong Ma; Qingqing Song; Hailong Zhou; Qian Han; Xiaoping Diao

Spatial and temporal distributions of 14 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface waters of Haikou Bay, China from October 2013 to September 2014. The total PAHs concentrations ranged from 420.2 to 2539.1 ng L(-1) with the average value of 1016.3±455.8 ng L(-1), which were predominated by low molecular weight PAHs (2- and 3-ring PAHs). Moreover, PAHs displayed spatial and temporal variations in the concentration and composition pattern. Source analysis based on isomer ratios indicated that the PAHs mostly originated from petroleum and combustion processes. An eco-toxicological risk assessment showed that the potential risk of individual PAHs had reached moderate to high levels and the total concentrations of PAHs had also reached a relatively high level compared with previous studies. This study offers important information on the pollution levels of 14 PAHs in the surface waters of Haikou Bay and recommends that prevention and control of PAHs pollution should be implemented in the region.


Chemosphere | 2016

Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing.

Xiu Jiang; Liguo Qiu; Hongwei Zhao; Qinqin Song; Hailong Zhou; Qian Han; Xiaoping Diao

The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.


Chemosphere | 2016

Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia

Lin Wei; Yuhu Li; Liguo Qiu; Hailong Zhou; Qian Han; Xiaoping Diao

Litopenaeus vannamei has a high commercial value and is the primary cultured shellfish species globally. In this study, we have compared the hemolymph physiological responses between two L. vannamei strains under acute hypoxia. The results showed that hemocyanin concentration (HC) of strain A6410 was significantly higher than strain Zhengda; Total hemocyte counts (THC) decreased significantly in both strains under hypoxic stress (p < 0.05). We also investigated the temporal and spatial variations of hypoxia inducible factors 1 (HIF-1) by qRT-PCR. The results showed that hypoxia for 12 h increased the expression levels of HIF-1α in tissues of muscle and gill from the two strains (p < 0.05). In the hepatopancreas, the expression levels of HIF-1 increased significantly in strain Zhengda and decreased significantly in strain A6410 (p < 0.05). No significant changes of HIF-1 expression were detected in the same tissues between the two strains under hypoxia for 6 h (p > 0.05), but in the gills and hepatopancreas under hypoxia for 12 h (p < 0.05). Additionally, the expression level of HIF-1 was higher in the strain Zhengda than A6410 in the same tissue under hypoxia for 12 h. It was indicated that the hypoxic tolerance of Litopenaeus vannamei was closely correlated with the expression level of HIF-1, and the higher expression level of HIF-1 to hypoxia, the lower tolerance to hypoxia in the early stage of hypoxia. These results can help to better understand the molecular mechanisms of hypoxic tolerance and speed up the selective breeding process of hypoxia tolerance in L. vannamei.

Collaboration


Dive into the Xiaoping Diao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge