Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoqiang Wang is active.

Publication


Featured researches published by Xiaoqiang Wang.


The Plant Cell | 2005

Crystal Structures of a Multifunctional Triterpene/Flavonoid Glycosyltransferase from Medicago truncatula

Hui Shao; Xian-Zhi He; Lahoucine Achnine; Jack W. Blount; Richard A. Dixon; Xiaoqiang Wang

Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key residues involved in the recognition of donor substrate and, by comparison with other GT structures, suggest His-22 as the catalytic base and Asp-121 as a key residue that may assist deprotonation of the acceptor by forming an electron transfer chain with the catalytic base. Mutagenesis confirmed the roles of these key residues in donor substrate binding and enzyme activity. Our results provide an initial structural basis for understanding the complex substrate specificity and regiospecificity underlying the glycosylation of plant natural products and other small molecules. This information will direct future attempts to engineer bioactive compounds in crop plants to improve plant, animal, and human health and to facilitate the rational design of GTs to improve the storage and stability of novel engineered bioactive compounds.


Nature Structural & Molecular Biology | 2001

Structural basis for recognition of AU-rich element RNA by the HuD protein

Xiaoqiang Wang; Traci M. Tanaka Hall

Hu proteins bind to adenosine-uridine (AU)-rich elements (AREs) in the 3′ untranslated regions of many short-lived mRNAs, thereby stabilizing them. Here we report the crystal structures of the first two RNA recognition motif (RRM) domains of the HuD protein in complex with an 11-nucleotide fragment of a class I ARE (the c-fos ARE; to 1.8 Å), and with an 11-nucleotide fragment of a class II ARE (the tumor necrosis factor α ARE; to 2.3 Å). These structures reveal a consensus RNA recognition sequence that suggests a preference for pyrimidine-rich sequences and a requirement for a central uracil residue in the clustered AUUUA repeats found in class II AREs. Comparison to structures of other RRM domain–nucleic acid complexes reveals two base recognition pockets in all the structures that interact with bases using residues in conserved ribonucleoprotein motifs and at the C-terminal ends of RRM domains. Different conformations of nucleic acid can be bound by RRM domains by using different combinations of base recognition pockets and multiple RRM domains.


Molecular Cell | 2001

Crystal Structure of a Pumilio Homology Domain

Xiaoqiang Wang; Phillip D. Zamore; Traci M. Tanaka Hall

Puf proteins regulate translation and mRNA stability by binding sequences in their target RNAs through the Pumilio homology domain (PUM-HD), which is characterized by eight tandem copies of a 36 amino acid motif, the PUM repeat. We have solved the structure of the PUM-HD from human Pumilio1 at 1.9 A resolution. The structure reveals that the eight PUM repeats correspond to eight copies of a single, repeated structural motif. The PUM repeats pack together to form a right-handed superhelix that approximates a half doughnut. The distribution of side chains on the inner and outer faces of this half doughnut suggests that the inner face of the PUM-HD binds RNA while the outer face interacts with proteins such as Nanos, Brain Tumor, and cytoplasmic polyadenylation element binding protein.


The Plant Cell | 2013

LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis

Qiao Zhao; Jin Nakashima; Fang Chen; Yanbin Yin; Chunxiang Fu; Jianfei Yun; Hui Shao; Xiaoqiang Wang; Zeng-Yu Wang; Richard A. Dixon

Laccases and peroxidases are encoded by large gene families in plants, and both enzymes have been implicated in the polymerization of monolignols during lignification. Loss of function of three LACCASE genes in Arabidopsis essentially eliminates lignification in root and stem tissue, in the absence of reductions in peroxidase transcripts, indicating that laccase is essential for lignification. The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants.


Plant Molecular Biology | 2007

A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula

Luzia V. Modolo; Jack W. Blount; Lahoucine Achnine; Marina Naoumkina; Xiaoqiang Wang; Richard A. Dixon

Analysis of over 200,000 expressed sequence tags from a range of Medicago truncatula cDNA libraries resulted in the identification of over 150 different family 1 glycosyltransferase (UGT) genes. Of these, 63 were represented by full length clones in an EST library collection. Among these, 19 gave soluble proteins when expressed in E. coli, and these were screened for catalytic activity against a range of flavonoid and isoflavonoid substrates using a high-throughput HPLC assay method. Eight UGTs were identified with activity against isoflavones, flavones, flavonols or anthocyanidins, and several showed high catalytic specificity for more than one class of (iso)flavonoid substrate. All tested UGTs preferred UDP-glucose as sugar donor. Phylogenetic analysis indicated that the Medicago (iso)flavonoid glycosyltransferase gene sequences fell into a number of different clades, and several clustered with UGTs annotated as glycosylating non-flavonoid substrates. Quantitative RT-PCR and DNA microarray analysis revealed unique transcript expression patterns for each of the eight UGTs in Medicago organs and cell suspension cultures, and comparison of these patterns with known phytochemical profiles suggested in vivo functions for several of the enzymes.


FEBS Letters | 2009

Structure, mechanism and engineering of plant natural product glycosyltransferases

Xiaoqiang Wang

Glycosylation is a key mechanism in determining chemical complexity and diversity of plant natural products, and influencing their chemical properties and bioactivities. Uridine diphosphate glycosyltransferases (UGTs) are the central players in these glycosylation processes for decorating natural products with sugars. Crystal structures of plant UGTs have revealed their exquisite architectures and provided the structural basis for understanding their catalytic mechanism and substrate specificity. Structure‐based UGT engineering can alter substrate specificity; compromise or enhance catalytic efficiency; and confer reversibility to the glycosylation reaction. This review highlights the structural insights on plant UGTs and successes in glycosylation engineering.


Journal of Biological Chemistry | 2006

Mutational Analysis of the Medicago Glycosyltransferase UGT71G1 Reveals Residues That Control Regioselectivity for (Iso)flavonoid Glycosylation

Xian-Zhi He; Xiaoqiang Wang; Richard A. Dixon

The plant glycosyltransferase UGT71G1 from the model legume barrel medic (Medicago truncatula) glycosylates flavonoids, isoflavonoids, and triterpenes. It can transfer glucose to each of the five hydroxyl groups of the flavonol quercetin, with the 3′-O-glucoside as the major product, and to the A-ring 7-hydroxyl of the isoflavone genistein. The sugar donor and acceptor binding pockets are located in the N and C termini, respectively, of the recently determined crystal structure of UGT71G1. The residues forming the binding pockets of UGT71G1 were systematically altered by site-directed mutagenesis. Mutation of Phe148 to Val, or Tyr202 to Ala, drastically changed the regioselectivity for quercetin glycosylation from predominantly the 3′-O-position of the B-ring to the 3-O-position of the C ring. The Y202A mutant exhibited comparable catalytic efficiency with quercetin to the wild-type enzyme, whereas efficiency was reduced 3-4-fold in the F148V mutant. The Y202A mutant gained the ability to glycosylate the 5-hydroxyl of genistein. Additional mutations affected the relative specificities for the sugar donors UDP-galactose and UDP-glucuronic acid, although UDP-glucose was always preferred. The results are discussed in relation to the design of novel biocatalysts for production of therapeutic flavonoids.


Journal of Molecular Biology | 2009

Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.

Luzia V. Modolo; Lenong Li; Haiyun Pan; Jack W. Blount; Richard A. Dixon; Xiaoqiang Wang

The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 A resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase.

Lenong Li; Zhenzhan Chang; Zhiqiang Pan; Zheng-Qing Fu; Xiaoqiang Wang

Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between β3–2 and β3–3. Asn-276 in the substrate binding site may interact with the substrates hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.


Current Drug Metabolism | 2011

Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis

Baojian Wu; Sumit Basu; Shengnan Meng; Xiaoqiang Wang; Ming Hu

The phase II metabolism sulfation and glucuronidation, mediated by sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) respectively, are significant metabolic pathways for numerous endo-and xenobiotics. Understanding of SULT/UGT substrate specificity including regioselectivity (i.e., position preference) is of great importance in predicting contribution of sulfation/ glucuronidation to drug and metabolite disposition in vivo. This review summarizes regioselective sulfation and glucuronidation of phenolic compounds with multiple hydroxyl (OH) groups as the potential conjugation sites. The strict regioselective patterns are highlighted for several SULT and UGT isoforms towards flavonoids, a large class of natural polyphenols. To seek for a molecular-level explanation, the enzyme structures (i.e., SULT crystal structures and a homology-modeled UGT structure) combined with molecular docking are employed. In particular, the structural basis for regioselective metabolism of flavonoids by SULT1A3 and UGT1A1 is discussed. It is concluded that the regioselective nature of these phase II enzymes is determined by the size and shape of the binding pocket. While the molecular structures of the enzymes can be used to explain regioselective metabolism regarding the binding property, predicting the turnover at different positions remains a particularly difficult task.

Collaboration


Dive into the Xiaoqiang Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luzia V. Modolo

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Ming Hu

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Traci M. Tanaka Hall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Loy

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Jordan Tang

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Luis L. Escamilla-Treviño

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Phillip D. Zamore

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Xian-Zhi He

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge