Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaorong Zhu is active.

Publication


Featured researches published by Xiaorong Zhu.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects

Xiaorong Zhu; An Zhou; Arunangsu Dey; Christina Norrbom; Raymond J. Carroll; Chunling Zhang; Virginie Laurent; Iris Lindberg; Randi Ugleholdt; Jens J. Holst; Donald F. Steiner

The subtilisin-like proprotein convertases PC1/3 (SPC3) and PC2 (SPC2) are believed to be the major endoproteolytic processing enzymes of the regulated secretory pathway. They are expressed together or separately in neuroendocrine cells throughout the brain and dispersed endocrine system in both vertebrates and invertebrates. Disruption of the gene-encoding mouse PC1/3 has now been accomplished and results in a syndrome of severe postnatal growth impairment and multiple defects in processing many hormone precursors, including hypothalamic growth hormone-releasing hormone (GHRH), pituitary proopiomelanocortin to adrenocorticotropic hormone, islet proinsulin to insulin and intestinal proglucagon to glucagon-like peptide-1 and -2. Mice lacking PC1/3 are normal at birth, but fail to grow normally and are about 60% of normal size at 10 weeks. They lack mature GHRH, have low pituitary growth hormone (GH) and hepatic insulin-like growth factor-1 mRNA levels and resemble phenotypically the “little” mouse (Gaylinn, B. D., Dealmeida, V. I., Lyons, C. E., Jr., Wu, K. C., Mayo, K. E. & Thorner, M. O. (1999) Endocrinology 140, 5066–5074) that has a mutant GHRH receptor. Despite a severe defect in pituitary proopiomelanocortin processing to mature adrenocorticotropic hormone, blood corticosterone levels are essentially normal. There is marked hyperproinsulinemia but without impairment of glucose tolerance. In contrast, PC2-null mice lack mature glucagon and are chronically hypoglycemic (Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H. & Steiner, D. (1997) Proc. Natl. Acad. Sci. USA 94, 6646–6651). The PC1/3-null mice differ from a human subject reported with compound heterozygosity for defects in this gene, who was of normal stature but markedly obese from early life. The PC1/3-null mice are not obese. The basis for these phenotypic differences is an interesting topic for further study. These findings prove the importance of PC1/3 as a key neuroendocrine convertase.


Journal of Biological Chemistry | 2006

On the processing of proghrelin to ghrelin.

Xiaorong Zhu; Yun Cao; Keith Voodg; Donald F. Steiner

The orexigenic hormone ghrelin is a 28-amino-acid peptide derived from a 99-amino-acid precursor and acylated at Ser-3, which was initially isolated from rat stomach. In addition to stimulating appetite and growth, it also plays various important roles in energy homeostasis and in the cardiovascular and immune systems. Although analysis of its physiological effects has yielded many significant results, much less information is available on its biosynthesis and the mechanism of its acylation. In this report, we have studied the endoproteolytic processing of this molecule from its precursor (proghrelin) into mature ghrelin in various prohormone convertase null mouse strains generated in our laboratory and have identified the convertase responsible for this event. Using Western blotting, mass spectrometry, and immunocytochemical methods, we have demonstrated that (a) in mouse stomach, prohormone convertase 1/3 (PC1/3) is the endoprotease responsible for the conversion of proghrelin to ghrelin, (b) the acylation of this peptide is processing-independent, and (c) the expression of proghrelin mRNA is increased in the processing-deficient (PC1/3 null) mouse.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3.

Xiaorong Zhu; Lelio Orci; Raymond J. Carroll; Christina Norrbom; Mariella Ravazzola; Donald F. Steiner

The neuroendocrine processing endoproteases PC2 and PC1/3 are expressed in the β cells of the islets of Langerhans and participate in the processing of proinsulin to insulin and C-peptide. We have previously shown that disruption of PC2 (SPC2) expression significantly impairs proinsulin processing. Here we report that disruption of the expression of PC1/3 (SPC3) produces a much more severe block in proinsulin conversion. In nulls, pancreatic and circulating proinsulin-like components comprise 87% and 91%, respectively, of total insulin-related immunoreactivity. Heterozygotes also show a more than 2-fold elevation in proinsulin levels to ≈12%. Immunocytochemical and ultrastructural studies of the β cells reveal the nearly complete absence of mature insulin immunoreactivity and its replacement by that of proinsulin in abundant immature-appearing secretory granules. In contrast, α cell morphology and glucagon processing are normal, and there is also no defect in somatostatin-14 generation. Pulse–chase labeling studies confirm the existence of a major block in proinsulin processing in PC1/3 nulls with prolongation of half-times of conversion by 7- and 10-fold for proinsulins I and II, respectively. Lack of PC1/3 also results in increased levels of des-64,65 proinsulin intermediates generated by PC2, in contrast to PC2 nulls, in which des- 31,32 proinsulin intermediates predominate. These results confirm that PC1/3 plays a major role in processing proinsulin, but that its coordinated action with PC2 is necessary for the most efficient and complete processing of this prohormone.


Gastroenterology | 2014

Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice

Rui Kang; Qiuhong Zhang; Wen Hou; Zhenwen Yan; Ruochan Chen; Jillian Bonaroti; Preeti Bansal; Timothy R. Billiar; Allan Tsung; Qingde Wang; David L. Bartlett; David C. Whitcomb; Eugene B. Chang; Xiaorong Zhu; Haichao Wang; Ben Lu; Kevin J. Tracey; Lizhi Cao; Xue-Gong Fan; Michael T. Lotze; Herbert J. Zeh; Daolin Tang

BACKGROUND & AIMS High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice after induction of acute pancreatitis. METHODS We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1(flox/flox) mice). Acute pancreatitis was induced in these mice (HMGB1(flox/flox) mice served as controls) after injection of l-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS After injection of l-arginine or cerulein, Pdx1-Cre; HMGB1(flox/flox) mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1(flox/flox) mice after l-arginine or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA nuclear factor κB, degradation of inhibitor of κB, and phosphorylation of mitogen-activated protein kinase. Inhibitors of reactive oxygen species (N-acetyl-l-cysteine) blocked l-arginine-induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of nuclear factor κB in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1(flox/flox) and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival after l-arginine injection. CONCLUSIONS In 2 mouse models of acute pancreatitis, intracellular HMGB1 appeared to prevent nuclear catastrophe and release of inflammatory nucleosomes to block inflammation. These findings indicate a role for the innate immune response in tissue damage.


Journal of Biological Chemistry | 2006

Prohormone Convertase 1/3 Is Essential for Processing of the Glucose-dependent Insulinotropic Polypeptide Precursor

Randi Ugleholdt; Marie-Louise H. Poulsen; Peter J. Holst; Jean-Claude Irminger; Cathrine Ørskov; Jens Z. Pedersen; Mette M. Rosenkilde; Xiaorong Zhu; Donald F. Steiner; Jens J. Holst

The physiology of the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and their role in type 2 diabetes currently attract great interest. Recently we reported an essential role for prohormone convertase (PC) 1/3 in the cleavage of intestinal proglucagon, resulting in formation of GLP-1, as demonstrated in PC1/3-deficient mice. However, little is known about the endoproteolytic processing of the GIP precursor. This study investigates the processing of proGIP in PC1/3 and PC2 null mice and in cell lines using adenovirus-mediated overexpression. Supporting a role for PC1/3 in proGIP processing, we found co-localization of GIP and PC1/3 but not PC2 in intestinal sections by immunohistochemistry, and analysis of intestinal extracts from PC1/3-deficient animals demonstrated severely impaired processing to GIP, whereas processing to GIP was unaltered in PC2-deficient mice. Accordingly, overexpression of preproGIP in the neuroendocrine AtT-20 cell line that expresses high levels of endogenous PC1/3 and negligible levels of PC2 resulted in production of GIP. Similar results were obtained after co-expression of preproGIP and PC1/3 in GH4 cells that express no PC2 and only low levels of PC1/3. In addition, studies in GH4 cells and the α-TC1.9 cell line, expressing PC2 but not PC1/3, indicate that PC2 can mediate processing to GIP but also to other fragments not found in intestinal extracts. Taken together, our data indicate that PC1/3 is essential and sufficient for the production of the intestinal incretin hormone GIP, whereas PC2, although capable of cleaving proGIP, does not participate in intestinal proGIP processing and is not found in intestinal GIP-expressing cells.


Hepatology | 2014

Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection.

Hai Huang; Gary W. Nace; Kerry-Ann McDonald; Sheng Tai; John R. Klune; Brian R. Rosborough; Qing Ding; Patricia Loughran; Xiaorong Zhu; Donna Beer-Stolz; Eugene B. Chang; Timothy R. Billiar; Allan Tsung

High‐mobility group box 1 (HMGB1) is an abundant chromatin‐associated nuclear protein and released into the extracellular milieu during liver ischemia‐reperfusion (I/R), signaling activation of proinflammatory cascades. Because the intracellular function of HMGB1 during sterile inflammation of I/R is currently unknown, we sought to determine the role of intracellular HMGB1 in hepatocytes after liver I/R. When hepatocyte‐specific HMGB1 knockout (HMGB1‐HC‐KO) and control mice were subjected to a nonlethal warm liver I/R, it was found that HMGB1‐HC‐KO mice had significantly greater hepatocellular injury after I/R, compared to control mice. Additionally, there was significantly greater DNA damage and decreased chromatin accessibility to repair with lack of HMGB1. Furthermore, lack of hepatocyte HMGB1 led to excessive poly(ADP‐ribose)polymerase 1 activation, exhausting nicotinamide adenine dinucleotide and adenosine triphosphate stores, exacerbating mitochondrial instability and damage, and, consequently, leading to increased cell death. We found that this was also associated with significantly more oxidative stress (OS) in HMGB1‐HC‐KO mice, compared to control. Increased nuclear instability led to a resultant increase in the release of histones with subsequently more inflammatory cytokine production and organ damage through activation of Toll‐like receptor 9. Conclusion: The lack of HMGB1 within hepatocytes leads to increased susceptibility to cellular death after OS conditions. (Hepatology 2014;59:1984–1997)


Journal of Neurochemistry | 2010

Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics

Jonathan H. Wardman; Xin Zhang; Sandra Gagnon; Leandro M. Castro; Xiaorong Zhu; Donald F. Steiner; Robert Day; Lloyd D. Fricker

J. Neurochem. (2010) 114, 215–225.


Journal of Clinical Investigation | 2015

Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation

Xiaorong Zhu; Jeannette S. Messer; Yunwei Wang; Fanfei Lin; Candace M. Cham; Jonathan E. Chang; Timothy R. Billiar; Michael T. Lotze; David L. Boone; Eugene B. Chang

The intracellular protein HMGB1 is released from cells and acts as a damage-associated molecular pattern molecule during many diseases, including inflammatory bowel disease (IBD); however, the intracellular function of HMGB1 during inflammation is poorly understood. Here, we demonstrated that cytosolic HMGB1 regulates apoptosis by protecting the autophagy proteins beclin 1 and ATG5 from calpain-mediated cleavage during inflammation. Colitis in mice with an intestinal epithelial cell-specific Hmgb1 deletion and patients with IBD were both characterized by increased calpain activation, beclin 1 and ATG5 cleavage, and intestinal epithelial cell (IEC) death compared with controls. In vitro cleavage assays and studies of enteroids verified that HMGB1 protects beclin 1 and ATG5 from calpain-mediated cleavage events that generate proapoptotic protein fragments. Together, our results indicate that HMGB1 is essential for mitigating the extent and severity of inflammation-associated cellular injury by controlling the switch between the proautophagic and proapoptotic functions of beclin 1 and ATG5 during inflammation. Moreover, these studies demonstrate that HMGB1 is pivotal for reducing tissue injury in IBD and other complex inflammatory disorders.


PLOS ONE | 2011

TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

Lauren Kolodziej; James P. Lodolce; Jonathan E. Chang; Jeffrey R. Schneider; Wesley Grimm; Sarah Bartulis; Xiaorong Zhu; Jeannette S. Messer; Stephen F. Murphy; Nishith Reddy; Jerrold R. Turner; David L. Boone

Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohns disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation.


International Journal of Radiation Oncology Biology Physics | 2016

Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non-Small Cell Lung Cancer

Joe Y. Chang; Salma K. Jabbour; Dirk De Ruysscher; Steven E. Schild; Charles B. Simone; Ramesh Rengan; S.J. Feigenberg; Atif J. Khan; Noah C. Choi; Jeffrey D. Bradley; Xiaorong Zhu; Antony Lomax

Radiation dose escalation has been shown to improve local control and survival in patients with non-small cell lung cancer in some studies, but randomized data have not supported this premise, possibly owing to adverse effects. Because of the physical characteristics of the Bragg peak, proton therapy (PT) delivers minimal exit dose distal to the target volume, resulting in better sparing of normal tissues in comparison to photon-based radiation therapy. This is particularly important for lung cancer given the proximity of the lung, heart, esophagus, major airways, large blood vessels, and spinal cord. However, PT is associated with more uncertainty because of the finite range of the proton beam and motion for thoracic cancers. PT is more costly than traditional photon therapy but may reduce side effects and toxicity-related hospitalization, which has its own associated cost. The cost of PT is decreasing over time because of reduced prices for the building, machine, maintenance, and overhead, as well as newer, shorter treatment programs. PT is improving rapidly as more research is performed particularly with the implementation of 4-dimensional computed tomography-based motion management and intensity modulated PT. Given these controversies, there is much debate in the oncology community about which patients with lung cancer benefit significantly from PT. The Particle Therapy Co-operative Group (PTCOG) Thoracic Subcommittee task group intends to address the issues of PT indications, advantages and limitations, cost-effectiveness, technology improvement, clinical trials, and future research directions. This consensus report can be used to guide clinical practice and indications for PT, insurance approval, and clinical or translational research directions.

Collaboration


Dive into the Xiaorong Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Gillin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge