Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoshan Min is active.

Publication


Featured researches published by Xiaoshan Min.


Bioorganic & Medicinal Chemistry Letters | 2013

Structure guided design of a series of sphingosine kinase (SphK) inhibitors.

Darin Gustin; Yihong Li; Matthew Brown; Xiaoshan Min; M.J. Schmitt; Malgorzata Wanska; Xiaodong Wang; Richard V. Connors; Sheere Johnstone; Mario G. Cardozo; Alan C. Cheng; Shawn Jeffries; Brendon Franks; Shyun Li; Shanling Shen; Mariwil Wong; Holger Wesche; Guifen Xu; Timothy J. Carlson; Matthew Plant; Kurt Morgenstern; Karen Rex; Joanna Schmitt; Angela Coxon; Nigel Walker; Frank Kayser; Zhulun Wang

Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each others loss. Thus, inhibition of both isoforms is likely required to block SphK dependent angiogenesis. A structure based approach was used to design and synthesize a series of SphK inhibitors resulting in the identification of the first potent inhibitors of both isoforms of human SphK. Additionally, to our knowledge, this series of inhibitors contains the only sufficiently potent inhibitors of murine SphK1 with suitable physico-chemical properties to pharmacologically interrogate the role of SphK1 in rodent models and to reproduce the phenotype of SphK1 (-/-) mice.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH)

Xiaoshan Min; Stephen T. Thibault; Amy Porter; Darin Gustin; Timothy J. Carlson; Haoda Xu; Michelle Lindstrom; Guifen Xu; Craig Uyeda; Zhihua Ma; Yihong Li; Frank Kayser; Nigel Walker; Zhulun Wang

Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders. Nearly all FAAH inhibitors known to date attain their binding potency through a reversible or irreversible covalent modification of the nucleophile Ser241 in the unusual Ser-Ser-Lys catalytic triad. Here, we report the discovery and mechanism of action of a series of ketobenzimidazoles as unique and potent noncovalent FAAH inhibitors. Compound 2, a representative of these ketobenzimidazoles, was designed from a series of ureas that were identified from high-throughput screening. While urea compound 1 is characterized as an irreversible covalent inhibitor, the cocrystal structure of FAAH complexed with compound 2 reveals that these ketobenzimidazoles, though containing a carbonyl moiety, do not covalently modify Ser241. These inhibitors achieve potent inhibition of FAAH activity primarily from shape complementarity to the active site and through numerous hydrophobic interactions. These noncovalent compounds exhibit excellent selectivity and good pharmacokinetic properties. The discovery of this distinctive class of inhibitors opens a new avenue for modulating FAAH activity through nonmechanism-based inhibition.


Bioorganic & Medicinal Chemistry Letters | 2011

Identification of potent, noncovalent fatty acid amide hydrolase (FAAH) inhibitors.

Darin Gustin; Zhihua Ma; Xiaoshan Min; Yihong Li; Christine Hedberg; Cris Guimaraes; Amy Porter; Michelle Lindstrom; Dianna Lester-Zeiner; Guifen Xu; Timothy J. Carlson; Shou-Hua Xiao; Cesar Meleza; Richard V. Connors; Zhulun Wang; Frank Kayser

Starting from a series of ureas that were determined to be mechanism-based inhibitors of FAAH, several spirocyclic ureas and lactams were designed and synthesized. These efforts identified a series of novel, noncovalent FAAH inhibitors with in vitro potency comparable to known covalent FAAH inhibitors. The mechanism of action for these compounds was determined through a combination of SAR and co-crystallography with rat FAAH.


Chemical Biology & Drug Design | 2007

Structural characterization and pharmacodynamic effects of an orally active 11beta-hydroxysteroid dehydrogenase type 1 inhibitor.

Clarence Hale; Murielle M. Véniant; Zhulun Wang; Michelle Chen; Jocelyn McCormick; Rod Cupples; Dean Hickman; Xiaoshan Min; Athena Sudom; Haoda Xu; Guy Matsumoto; Christopher Fotsch; David J. St. Jean; Minghan Wang

11β‐Hydroxysteroid dehydrogenase type 1 regulates glucocorticoid action and inhibition of this enzyme is a viable therapeutic strategy for the treatment of type 2 diabetes and the metabolic syndrome. Here, we report a potent and selective 11β‐hydroxysteroid dehydrogenase type 1 inhibitor with a binding mode elucidated from the co‐crystal structure with the human 11β‐hydroxysteroid dehydrogenase type 1. The inhibitor is bound to the steroid‐binding pocket making contacts with the catalytic center and the solvent channel. The inhibitor binding is facilitated by two direct hydrogen bond interactions involving Tyrosine183 of the catalytic motif Tyr‐X‐X‐X‐Lys and Alanine172. In addition, the inhibitor makes many hydrophobic interactions with both the enzyme and the co‐factor nicotinamide adenine dinucleotide phosphate (reduced). In lean C57BL/6 mice, the compound inhibited both the in vivo and ex vivo 11β‐hydroxysteroid dehydrogenase type 1 activities in a dose‐dependent manner. The inhibitory effects correlate with the plasma compound concentrations, suggesting that there is a clear pharmacokinetic and pharmacodynamic relationship. Moreover, at the same doses used in the pharmacokinetic/pharmacodynamic studies, the inhibitor did not cause the activation of the hypothalamic–pituitary–adrenal axis in an acute mouse model, suggesting that this compound exhibits biological effects with minimal risk of activating the hypothalamic–pituitary–adrenal axis.


FEBS Letters | 2012

Crystal structure of a single-chain trimer of human adiponectin globular domain.

Xiaoshan Min; Bryan Lemon; Jie Tang; Qiang Liu; Richard Zhang; Nigel Walker; Yang Li; Zhulun Wang

Adiponectin is increasingly recognized as a potential therapeutic agent for the treatment of diabetes and other metabolic diseases. It circulates in plasma as homotrimers and higher‐order oliogomers of homotrimers. To facilitate the production of active recombinant adiponectin as a therapeutic tool, we designed a single‐chain globular domain adiponectin (sc‐gAd) in which three monomer sequences are linked together in tandem to form one contiguous polypeptide. Here, we present the crystal structure of human sc‐gAd at 2.0 Å resolution. The structure reveals a similar trimeric topology to that of mouse gAd protein. Trimer formation is further rigidified by three calcium ions.


Journal of Biological Chemistry | 2012

Structure of the Nuclear Factor κB-inducing Kinase (NIK) Kinase Domain Reveals a Constitutively Active Conformation

Jinsong Liu; Athena Sudom; Xiaoshan Min; Zhaodan Cao; Xiong Gao; Merrill Ayres; Fei Lee; Ping Cao; Sheree Johnstone; Olga Plotnikova; Nigel Walker; Guoqing Chen; Zhulun Wang

Background: NIK is a central component in the non-canonical NF-κB pathway, and its activity is associated with various diseases. Results: An N-terminal extension is required for activity and stabilizes the kinase in an active conformation. Conclusion: The NIK kinase domain adopts a constitutively active conformation. Significance: This work presents the first NIK structure and provides a molecular basis for NIK regulation. NF-κB-inducing kinase (NIK) is a central component in the non-canonical NF-κB signaling pathway. Excessive NIK activity is implicated in various disorders, such as autoimmune conditions and cancers. Here, we report the first crystal structure of truncated human NIK in complex with adenosine 5′-O-(thiotriphosphate) at a resolution of 2.5 Å. This truncated protein is a catalytically active construct, including an N-terminal extension of 60 residues prior to the kinase domain, the kinase domain, and 20 residues afterward. The structure reveals that the NIK kinase domain assumes an active conformation in the absence of any phosphorylation. Analysis of the structure uncovers a unique role for the N-terminal extension sequence, which stabilizes helix αC in the active orientation and keeps the kinase domain in the catalytically competent conformation. Our findings shed light on the long-standing debate over whether NIK is a constitutively active kinase. They also provide a molecular basis for the recent observation of gain-of-function activity for an N-terminal deletion mutant (ΔN324) of NIK, leading to constitutive non-canonical NF-κB signaling with enhanced B-cell adhesion and apoptosis resistance.


Science Translational Medicine | 2017

Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys

Yumei Xiong; Kenneth W. Walker; Xiaoshan Min; Clarence Hale; Thanhvien Tran; Renee Komorowski; Jerry Yang; Jasmine Davda; Noi Nuanmanee; Dao Kemp; Xiaozhen Wang; Hantao Liu; Silke Miller; Ki Jeong Lee; Zhulun Wang; Murielle M. Véniant

Engineered long-acting GDF15-Fc fusion molecules reduce food intake and body weight and improve metabolic profiles in animal models of obesity. A bigger molecule to help slim down Obesity is becoming increasingly common worldwide, and the available interventions do not fully address this problem. Surgery is currently the most effective intervention, especially for severe obesity, but it carries more risks than noninvasive treatments and produces permanent side effects. Xiong et al. searched for metabolically regulated proteins and identified the growth differentiation factor 15 (GDF15) pathway as a potential target for intervention. The loss of this protein in mice is associated with weight gain and worsened metabolic parameters. Conversely, the authors showed that treating with GDF15 improved metabolic health in mice, rats, and monkeys. They also designed a modified version of GDF15 (GDF15-Fc fusion) that has a longer half-life and would thus be a better candidate for clinical testing. In search of metabolically regulated secreted proteins, we conducted a microarray study comparing gene expression in major metabolic tissues of fed and fasted ob/ob mice and C57BL/6 mice. The array used in this study included probes for ~4000 genes annotated as potential secreted proteins. Circulating macrophage inhibitory cytokine 1 (MIC-1)/growth differentiation factor 15 (GDF15) concentrations were increased in obese mice, rats, and humans in comparison to age-matched lean controls. Adeno-associated virus–mediated overexpression of GDF15 and recombinant GDF15 treatments reduced food intake and body weight and improved metabolic profiles in various metabolic disease models in mice, rats, and obese cynomolgus monkeys. Analysis of the GDF15 crystal structure suggested that the protein is not suitable for conventional Fc fusion at the carboxyl terminus of the protein. Thus, we used a structure-guided approach to design and successfully generate several Fc fusion molecules with extended half-life and potent efficacy. Furthermore, we discovered that GDF15 delayed gastric emptying, changed food preference, and activated area postrema neurons, confirming a role for GDF15 in the gut-brain axis responsible for the regulation of body energy intake. Our work provides evidence that GDF15 Fc fusion proteins could be potential therapeutic agents for the treatment of obesity and related comorbidities.


Journal of Biological Chemistry | 2015

Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2)

Xiaoshan Min; Daniela Ungureanu; Sarah Sollid Maxwell; Henrik Hammarén; Steve Thibault; Ellin-Kristina Hillert; Merrill Ayres; Brad W. Greenfield; John Eksterowicz; Chris Gabel; Nigel Walker; Olli Silvennoinen; Zhulun Wang

Background: JAK JH2s (pseudokinase domains) mediate important regulatory functions; it is unclear whether TYK2 JH2 binds ATP and possesses enzymatic activity. Results: TYK2 JH2 binds ATP, but is catalytically inactive; ATP stabilizes JH2 and modulates TYK2 activity. Conclusion: ATP binding to JH2 is functionally important; the rigid activation loop probably hinders substrate phosphorylation. Significance: The TYK2 JH2 domain can be targeted with ATP-competitive compounds for therapeutics. JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5′-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.


Journal of Biological Chemistry | 2018

Molecular basis for the loss-of-function effects of the Alzheimer's disease–associated R47H variant of the immune receptor TREM2

Athena Sudom; Santosh Talreja; Jean Danao; Eric Bragg; Rob Kegel; Xiaoshan Min; Nikolai Sharkov; Edoardo Marcora; Steve Thibault; Jodi Bradley; Steve Wood; Ai-Ching Lim; Hang Chen; Songli Wang; Ian Foltz; Shilpa Sambashivan; Zhulun Wang

Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimers disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand–interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.


Journal of Biological Chemistry | 2013

An Inhibitory Antibody against Dipeptidyl Peptidase IV Improves Glucose Tolerance in Vivo

Jie Tang; Jiangwen Majeti; Athena Sudom; Yumei Xiong; Mei Lu; Qiang Liu; Jared Higbee; Yi Zhang; Yan Wang; Wei Wang; Ping Cao; Zhen Xia; Sheree Johnstone; Xiaoshan Min; Xiaoping Yang; Hui Shao; Timothy Yu; Nik Sharkov; Nigel Walker; Hua Tu; Wenyan Shen; Zhulun Wang

Background: Suppression of DPP-IV activity improves type 2 diabetic symptoms. Results: Inhibitory antibodies suppress DPP-IV activity, promote glucose tolerance, and increase plasma GLP-1 levels in hyperglycemic Zucker fatty rats. Conclusion: Inhibitory antibody against DPP-IV offers pro-incretin effects in vivo. Significance: This study validates a large molecule approach for targeting DPP-IV activity. Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model.

Researchain Logo
Decentralizing Knowledge