Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoteng Fu is active.

Publication


Featured researches published by Xiaoteng Fu.


DNA Research | 2014

High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc.

Wenqian Jiao; Xiaoteng Fu; Jinzhuang Dou; Hengde Li; Hailin Su; Junxia Mao; Qian Yu; Lingling Zhang; Xiaoli Hu; Xiaoting Huang; Yangfan Wang; Shi Wang; Zhenmin Bao

Genetic linkage maps are indispensable tools in genetic and genomic studies. Recent development of genotyping-by-sequencing (GBS) methods holds great promise for constructing high-resolution linkage maps in organisms lacking extensive genomic resources. In the present study, linkage mapping was conducted for a bivalve mollusc (Chlamys farreri) using a newly developed GBS method—2b-restriction site-associated DNA (2b-RAD). Genome survey sequencing was performed to generate a preliminary reference genome that was utilized to facilitate linkage and quantitative trait locus (QTL) mapping in C. farreri. A high-resolution linkage map was constructed with a marker density (3806) that has, to our knowledge, never been achieved in any other molluscs. The linkage map covered nearly the whole genome (99.5%) with a resolution of 0.41 cM. QTL mapping and association analysis congruously revealed two growth-related QTLs and one potential sex-determination region. An important candidate QTL gene named PROP1, which functions in the regulation of growth hormone production in vertebrates, was identified from the growth-related QTL region detected on the linkage group LG3. We demonstrate that this linkage map can serve as an important platform for improving genome assembly and unifying multiple genomic resources. Our study, therefore, exemplifies how to build up an integrative genomic framework in a non-model organism.


PLOS ONE | 2013

Transcriptome Sequencing of Zhikong Scallop (Chlamys farreri) and Comparative Transcriptomic Analysis with Yesso Scallop (Patinopecten yessoensis)

Shan Wang; Rui Hou; Zhenmin Bao; Huixia Du; Yan He; Hailin Su; Yueyue Zhang; Xiaoteng Fu; Wenqian Jiao; Yan Li; Lingling Zhang; Shi Wang; Xiaoli Hu

Background Bivalves play an important role in the ecosystems they inhabit and represent an important food source all over the world. So far limited genetic research has focused on this group of animals largely due to the lack of sufficient genetic or genomic resources. Here, we performed de novo transcriptome sequencing to produce the most comprehensive expressed sequence tag resource for Zhikong scallop (Chlamys farreri), and conducted the first transcriptome comparison for scallops. Results In a single 454 sequencing run, 1,033,636 reads were produced and then assembled into 26,165 contigs. These contigs were then clustered into 24,437 isotigs and further grouped into 20,056 isogroups. About 47% of the isogroups showed significant matches to known proteins based on sequence similarity. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified through Gene ontology (GO) and KEGG pathway analyses. Transcriptome comparison with Yesso scallop (Patinopecten yessoensis) revealed similar patterns of GO representation. Moreover, 38 putative fast-evolving genes were identified through analyzing the orthologous gene pairs between the two scallop species. More than 46,000 single nucleotide polymorphisms (SNPs) and 350 simple sequence repeats (SSRs) were also detected. Conclusion Our study provides the most comprehensive transcriptomic resource currently available for C. farreri. Based on this resource, we performed the first large-scale transcriptome comparison between the two scallop species, C. farreri and P. yessoensis, and identified a number of putative fast-evolving genes, which may play an important role in scallop speciation and/or local adaptation. A large set of single nucleotide polymorphisms and simple sequence repeats were identified, which are ready for downstream marker development. This transcriptomic resource should lay an important foundation for future genetic or genomic studies on C. farreri.


Nature Ecology and Evolution | 2017

Scallop genome provides insights into evolution of bilaterian karyotype and development

Shi Wang; Jinbo Zhang; Wenqian Jiao; Ji Li; Xiaogang Xun; Yan Sun; Ximing Guo; Pin Huan; Bo Dong; Lingling Zhang; Xiaoli Hu; Xiaoqing Sun; Jing Wang; Chengtian Zhao; Yangfan Wang; Dawei Wang; Xiaoting Huang; Ruijia Wang; Jia Lv; Y.-T. Li; Zhifeng Zhang; Baozhong Liu; Wei Lu; Yuanyuan Hui; Jun Liang; Zunchun Zhou; Rui Hou; Xue Li; Yunchao Liu; Hengde Li

Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.


PLOS ONE | 2013

RADtyping: An Integrated Package for Accurate De Novo Codominant and Dominant RAD Genotyping in Mapping Populations

Xiaoteng Fu; Jinzhuang Dou; Junxia Mao; Hailin Su; Wenqian Jiao; Lingling Zhang; Xiaoli Hu; Xiaoting Huang; Shi Wang; Zhenmin Bao

Genetic linkage maps are indispensable tools in genetic, genomic and breeding studies. As one of genotyping-by-sequencing methods, RAD-Seq (restriction-site associated DNA sequencing) has gained particular popularity for construction of high-density linkage maps. Current RAD analytical tools are being predominantly used for typing codominant markers. However, no genotyping algorithm has been developed for dominant markers (resulting from recognition site disruption). Given their abundance in eukaryotic genomes, utilization of dominant markers would greatly diminish the extensive sequencing effort required for large-scale marker development. In this study, we established, for the first time, a novel statistical framework for de novo dominant genotyping in mapping populations. An integrated package called RADtyping was developed by incorporating both de novo codominant and dominant genotyping algorithms. We demonstrated the superb performance of RADtyping in achieving remarkably high genotyping accuracy based on simulated and real mapping datasets. The RADtyping package is freely available at http://www2.ouc.edu.cn/mollusk/ detailen.asp?id=727.


Biology Direct | 2012

Reference-free SNP calling: improved accuracy by preventing incorrect calls from repetitive genomic regions

Jinzhuang Dou; Xiqiang Zhao; Xiaoteng Fu; Wenqian Jiao; Nannan Wang; Lingling Zhang; Xiaoli Hu; Shi Wang; Zhenmin Bao

BackgroundSingle nucleotide polymorphisms (SNPs) are the most abundant type of genetic variation in eukaryotic genomes and have recently become the marker of choice in a wide variety of ecological and evolutionary studies. The advent of next-generation sequencing (NGS) technologies has made it possible to efficiently genotype a large number of SNPs in the non-model organisms with no or limited genomic resources. Most NGS-based genotyping methods require a reference genome to perform accurate SNP calling. Little effort, however, has yet been devoted to developing or improving algorithms for accurate SNP calling in the absence of a reference genome.ResultsHere we describe an improved maximum likelihood (ML) algorithm called iML, which can achieve high genotyping accuracy for SNP calling in the non-model organisms without a reference genome. The iML algorithm incorporates the mixed Poisson/normal model to detect composite read clusters and can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions. Through analysis of simulation and real sequencing datasets, we demonstrate that in comparison with ML or a threshold approach, iML can remarkably improve the accuracy of de novo SNP genotyping and is especially powerful for the reference-free genotyping in diploid genomes with high repeat contents.ConclusionsThe iML algorithm can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions, and thus outperforms the original ML algorithm by achieving much higher genotyping accuracy. Our algorithm is therefore very useful for accurate de novo SNP genotyping in the non-model organisms without a reference genome.ReviewersThis article was reviewed by Dr. Richard Durbin, Dr. Liliana Florea (nominated by Dr. Steven Salzberg) and Dr. Arcady Mushegian.


Molecular Ecology Resources | 2014

Sequencing‐based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri

Xiaoteng Fu; Yan Sun; Jingfeng Wang; Qiang Xing; Jiajun Zou; Ruojiao Li; Zhigang Wang; Shuyue Wang; Xiaoli Hu; Lu Zhang; Zhenmin Bao

Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome‐wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320–350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress‐responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing‐based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat‐tolerant scallop lines for aquaculture.


PLOS ONE | 2014

Genome-Wide Analysis of DNA Methylation in Five Tissues of Zhikong Scallop, Chlamys farreri

Yan Sun; Rui Hou; Xiaoteng Fu; Changsen Sun; Shi Wang; Chen Wang; Ning Li; Lingling Zhang; Zhenmin Bao

DNA methylation plays a vital role in tissue development and differentiation in eukaryotes. Epigenetic studies have been seldom conducted in the extremely diverse and evolutionarily highly successful bilaterian lineage Mollusca. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of a bivalve mollusc, Chlamys farreri using the methylation-sensitive amplification polymorphism (MSAP) technique. The methylation levels were quite similar among tissues, ranging from 20.9% to 21.7%. CG methylation was the dominant type (14.9%–16.5%) in the C. farreri genome, but CHG methylation also accounted for a substantial fraction of total methylation (5.1%–6.3%). Relatively high methylation diversity was observed within tissues. Methylation differentiation between tissues was evaluated and 460 tissue-specific epiloci were identified. Kidney differs from the other tissues in DNA methylation profiles. Our study presents the first look at the tissue-specific DNA methylation patterns in a bivalve mollusc and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in bivalves.


PLOS ONE | 2012

Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits.

Huihui Guo; Zhenmin Bao; Jiqin Li; Shanshan Lian; Shi Wang; Yan He; Xiaoteng Fu; Lingling Zhang; Xiaoli Hu

Background Scallops are an economically important aquaculture species in Asian countries, and growth-rate improvement is one of the main focuses of scallop breeding. Investigating the genetic regulation of scallop growth could benefit scallop breeding, as such research is currently limited. The transforming growth factor beta (TGF-β) signaling through type I and type II receptors, plays critical roles in regulating cell proliferation and growth, and is thus a plausible candidate growth regulator in scallops. Results We cloned and characterized the TGF-β type I receptor (Tgfbr1) gene from Zhikong scallops (Chlamys farreri). The deduced amino acid sequence contains characteristic residues and exhibits the conserved structure of Tgfbr1 proteins. A high expression level of scallop Tgfbr1 was detected during early embryonic stages, whereas Tgfbr1 expression was enriched in the gonad and striated muscle in adults. A single nucleotide polymorphism (SNP, c. 1815C>T) in the 3′ UTR was identified. Scallops with genotype TT had higher growth traits values than those with genotype CC or CT in a full-sib family, and significant differences were found between genotypes CC and TT for shell length, shell height, and striated muscle weight. An expression analysis detected significantly more Tgfbr1 transcripts in the striated muscle of scallops with genotype CC compared to those with genotype TT or CT. Further evaluation in a population also revealed higher striated muscle weight in scallops with genotype TT than those with the other two genotypes. The inverse correlation between striated muscle mass and Tgfbr1 expression is consistent with TGF-β signaling having a negative effect on cell growth. Conclusion The scallop Tgfbr1 gene was cloned and characterized, and an SNP potentially associated with both scallop growth and Tgfbr1 expression was identified. Our results suggest the negative regulation of Tgfbr1 in scallop growth and provide a candidate marker for Zhikong scallop breeding.


Open Biology | 2015

MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes.

Shi Wang; Jia Lv; Lingling Zhang; Jinzhuang Dou; Yan Sun; Xue Li; Xiaoteng Fu; Huaiqian Dou; Junxia Mao; Xiaoli Hu; Zhenmin Bao

Characterization of dynamic DNA methylomes in diverse phylogenetic groups has attracted growing interest for a better understanding of the evolution of DNA methylation as well as its function and biological significance in eukaryotes. Sequencing-based methods are promising in fulfilling this task. However, none of the currently available methods offers the ‘perfect solution’, and they have limitations that prevent their application in the less studied phylogenetic groups. The recently discovered Mrr-like enzymes are appealing for new method development, owing to their ability to collect 32-bp methylated DNA fragments from the whole genome for high-throughput sequencing. Here, we have developed a simple and scalable DNA methylation profiling method (called MethylRAD) using Mrr-like enzymes. MethylRAD allows for de novo (reference-free) methylation analysis, extremely low DNA input (e.g. 1 ng) and adjustment of tag density, all of which are still unattainable for most widely used methylation profiling methods such as RRBS and MeDIP. We performed extensive analyses to validate the power and accuracy of our method in both model (plant Arabidopsis thaliana) and non-model (scallop Patinopecten yessoensis) species. We further demonstrated its great utility in identification of a gene (LPCAT1) that is potentially crucial for carotenoid accumulation in scallop adductor muscle. MethylRAD has several advantages over existing tools and fills a void in the current epigenomic toolkit by providing a universal tool that can be used for diverse research applications, e.g. from model to non-model species, from ordinary to precious samples and from small to large genomes, but at an affordable cost.


Nature Communications | 2017

Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins

Y.-T. Li; Xiaoqing Sun; Xiaoli Hu; Xiaogang Xun; Jinbo Zhang; Ximing Guo; Wenqian Jiao; Lingling Zhang; Weizhi Liu; Jing Wang; Ji Li; Yan Sun; Yan Miao; Xiaokang Zhang; Taoran Cheng; Guoliang Xu; Xiaoteng Fu; Yangfan Wang; Xinran Yu; Xiaoting Huang; Wei Lu; Jia Lv; Chuang Mu; Dawei Wang; Xu Li; Yu Xia; Yajuan Li; Zhihui Yang; Fengliang Wang; Lu Zhang

Bivalve molluscs are descendants of an early-Cambrian lineage superbly adapted to benthic filter feeding. Adaptations in form and behavior are well recognized, but the underlying molecular mechanisms are largely unknown. Here, we investigate the genome, various transcriptomes, and proteomes of the scallop Chlamys farreri, a semi-sessile bivalve with well-developed adductor muscle, sophisticated eyes, and remarkable neurotoxin resistance. The scallop’s large striated muscle is energy-dynamic but not fully differentiated from smooth muscle. Its eyes are supported by highly diverse, intronless opsins expanded by retroposition for broadened spectral sensitivity. Rapid byssal secretion is enabled by a specialized foot and multiple proteins including expanded tyrosinases. The scallop uses hepatopancreas to accumulate neurotoxins and kidney to transform to high-toxicity forms through expanded sulfotransferases, probably as deterrence against predation, while it achieves neurotoxin resistance through point mutations in sodium channels. These findings suggest that expansion and mutation of those genes may have profound effects on scallop’s phenotype and adaptation.Bivalve molluscs have evolved various characteristics to adapt to benthic filter-feeding. Here, Li et al investigate the genome, transcriptomes and proteomes of scallop Chlamys farreri, revealing evidences of molecular adaptations to semi-sessile life and neurotoxins.

Collaboration


Dive into the Xiaoteng Fu's collaboration.

Top Co-Authors

Avatar

Lingling Zhang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Hu

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Zhenmin Bao

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Shi Wang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Wenqian Jiao

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Yan Sun

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Jia Lv

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Xiaoting Huang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Jinzhuang Dou

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Junxia Mao

Ocean University of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge