Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoxia Hu is active.

Publication


Featured researches published by Xiaoxia Hu.


Analytical Chemistry | 2014

Near-Infrared-Light Mediated Ratiometric Luminescent Sensor for Multimode Visualized Assays of Explosives

Xiaoxia Hu; Ting Wei; Jie Wang; Zien Liu; Xinyang Li; Binhao Zhang; Zhihao Li; Le-Le Li; Quan Yuan

The development of a portable and easy-to-use device for the detection of explosives with high sensitivity and selectivity is in high demand for homeland security and public safety. In this study, we demonstrate miniaturized devices depending on the upconversion ratiometric luminescent probe for point-of-care (POC) assay of explosives with the naked-eye. When the PEI-coated upconversion nanoparticles (UCNPs) selectively bonded to 2,4,6-trinitrotoluene (TNT) explosives by the formation of Meisenheimer complex, the formed of UCNP-Meisenheimer complexes show turned visible multicolor upconversion luminescence (UCL) on account of TNT-modulating Förster resonance energy transfer process under near-infrared excitation. With UCL emission at 808 nm as internal standard and ratiometric UCL at 477 nm to that at 808 nm (I477/I808) as output signal, the probe can simultaneously meet the accuracy for TNT explosives quantitative analysis. In addition, this easy-to-use visual technique provides a powerful tool for convenient POC assay of rapid explosives identification.


Journal of the American Chemical Society | 2015

Protein Activity Regulation: Inhibition by Closed-Loop Aptamer-Based Structures and Restoration by Near-IR Stimulation

Jie Wang; Yurong Wei; Xiaoxia Hu; Yu-Yan Fang; Xinyang Li; Jian Liu; Shengfu Wang; Quan Yuan

Regulation of protein activity is vital for understanding the molecular mechanism of biological activities. In this work, protein activity is suppressed by proximity-dependent surface hybridization and subsequently restored by near-infrared (NIR) light stimulation. Specifically, by constructing closed-loop structures with two aptamer-based affinity ligands, significantly enhanced inhibition of thrombin activity is achieved compared to traditional single affinity ligand based inhibitors. Furthermore, the activity of inhibited thrombin is efficiently recovered under NIR light stimulation by using gold nanorods (AuNRs) as photothermal agents to disrupt the closed-loop structures. Real-time and in situ monitoring of the conversion of fibrinogen into fibrin catalyzed by both inhibited and recovered thrombin was performed with light scattering spectroscopy and laser scanning confocal microscopy (LSCM). Thrombin trapped in the closed-loop structures shows slow reaction kinetics, while the photothermally liberated thrombin displays largely recovered catalytic activity. Human plasma was further employed to demonstrate that both the inhibited and restored thrombin can be applied to clotting reaction in reality. This strategy provides protein activity regulation for studying the molecular basis of biological activities and can be further applied to potential areas such as metabolic pathway regulation and the development of protein-inhibitor pharmaceuticals.


ACS Applied Materials & Interfaces | 2016

High-Performance Electrochemical Catalysts Based on Three-Dimensional Porous Architecture with Conductive Interconnected Networks

Dong Wang; Jie Wang; Zien Liu; Xiangdong Yang; Xiaoxia Hu; Jinqi Deng; Nianjun Yang; Qijin Wan; Quan Yuan

The electrochemical applications of traditional carbon nanomaterials such as carbon nanotubes (CNTs) and graphene (G) powders are significantly impeded by their poor three-dimensional (3D) conductivity and lack of hierarchical porous structure. Here, we have constructed a 3D highly conductive CNTs networks and further combined it with mesoporous carbon (mC) for the creation of a core-shell structured (CNT@mC) composite sponge that featured 3D conductivity and hierarchical porous structure. In the composite sponge, interconnected CNTs efficiently eliminates the contact resistance and the hierarchical pores significantly facilitate the mass transport. The electron transfer rates, electroactive surface area and catalytic activity of the CNT@mC composite sponge based catalysts were tested in the direct methanol fuel cells (DMFCs) and electrochemical sensors. In DMFCs, the Pd nanoparticles deposited CNT@mC showed significantly improved catalytic activity and methanol oxidization current. As for amperometric sensing of endocrine disrupting compounds (EDCs), CNT@mC-based catalyst gave a liner range from 10 nM to 1 mM for bisphenol A (BPA) detection and showed great promise for simultaneous detection of multiple EDCs. BPA recovery from environmental water further indicated the potential practical applications of the sensor for BPA detection. Finally, the electrochemical performance of CNT@mC were also investigated in impedimetric sensors. Good selectivity was obtained in impedimetric sensing of BPA and the detection limit was measured to be 0.3 nM. This study highlighted the exceptional electrochemical properties of the CNT@mC composite sponge enabled by its 3D conductivity and hierarchical porous structure. The strategy described may further pave a way for the creation of novel functional materials through integrating multiple superior properties into a single nanostructure for future clean energy technologies and environmental monitoring systems.


Advanced Materials | 2017

A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment

Xiaoxia Hu; Yulan Wang; Yaning Tan; Jie Wang; Haoyang Liu; Yingqian Wang; Shuang Yang; Miusi Shi; Shiyong Zhao; Yufeng Zhang; Quan Yuan

To solve the challenge of poor knee repair, an aptamer-bilayer scaffold is designed for autologous mesenchymal stem cell (MSC) recruitment and osteochondral regeneration. The scaffold can efficiently recruit MSCs to the defect and induce the directional differentiation of MSCs, thus successfully achieving simultaneous regeneration of cartilage and bone in the knee joint.


Advanced Science | 2016

A Targeted “Capture” and “Removal” Scavenger toward Multiple Pollutants for Water Remediation based on Molecular Recognition

Jie Wang; Haijing Shen; Xiaoxia Hu; Yan Li; Zhihao Li; Jinfan Xu; Xiufeng Song; Haibo Zeng; Quan Yuan

For the water remediation techniques based on adsorption, the long‐standing contradictories between selectivity and multiple adsorbability, as well as between affinity and recyclability, have put it on weak defense amid more and more severe environment crisis. Here, a pollutant‐targeting hydrogel scavenger is reported for water remediation with both high selectivity and multiple adsorbability for several pollutants, and with strong affinity and good recyclability through rationally integrating the advantages of multiple functional materials. In the scavenger, aptamers fold into binding pockets to accommodate the molecular structure of pollutants to afford perfect selectivity, and Janus nanoparticles with antibacterial function as well as anisotropic surfaces to immobilize multiple aptamers allow for simultaneously handling different kinds of pollutants. The scavenger exhibits high efficiencies in removing pollutants from water and it can be easily recycled for many times without significant loss of loading capacities. Moreover, the residual concentrations of each contaminant are well below the drinking water standards. Thermodynamic behavior of the adsorption process is investigated and the rate‐controlling process is determined. Furthermore, a point of use device is constructed and it displays high efficiency in removing pollutants from environmental water. The scavenger exhibits great promise to be applied in the next generation of water purification systems.


Analytical Chemistry | 2017

Time-Gated Imaging of Latent Fingerprints and Specific Visualization of Protein Secretions via Molecular Recognition

Jie Wang; Qinqin Ma; Haoyang Liu; Yingqian Wang; Haijing Shen; Xiaoxia Hu; Chao Ma; Quan Yuan; Weihong Tan

Persistent nanophosphors can remain luminescent after excitation ceases; thus, they offer a promising way to avoid background fluorescence interference in bioimaging. In this work, Zn2GeO4:Ga,Mn (ZGO:Ga,Mn) persistent luminescence nanoparticles were developed and they were employed for time-gated imaging of latent fingerprints (LFP). The nanoparticles were functionalized with a carboxyl group and utilized to label LFP through reacting with the amino group in the LFP. Results proved the potent ability of ZGO:Ga,Mn in eliminating background fluorescence to afford highly sensitive LFP imaging. Moreover, LFP aged for 60 days were successfully detected due to the presence of highly stable amino acids. After being functionalized with concanavalin A, the nanoparticles achieved visualization of glycoproteins in LFP. This strategy provides great versatility in LFP imaging and good potential in uncovering the chemical information within LFP, making it valuable in forensic investigations and medical diagnostics.


Journal of Materials Chemistry B | 2017

A 3D graphene coated bioglass scaffold for bone defect therapy based on the molecular targeting approach

Yulan Wang; Xiaoxia Hu; Jing Dai; Jie Wang; Yaning Tan; Xiangdong Yang; Shuang Yang; Quan Yuan; Yufeng Zhang

Development of a cell-free scaffold with excellent mechanical properties and osteoconductivity is of significant need for bone regeneration. Herein, a reduced graphene oxide (rGO) functionalized hierarchical macro-mesoporous bioactive glass scaffold integrated with an osteoblast-specific aptamer is rationally designed to recruit and induce the rapid differentiation of osteoblasts for bone regeneration. This scaffold exhibits a macroporous structure with fully interconnected open pores and shows excellent mechanical properties with a Youngs modulus of ∼80 kPa, which provides a strong scaffold to support the growth of osteoblasts and bone tissue regeneration. Furthermore, the scaffold displays good performance in accelerating osteoblast differentiation and promoting new bone formation. The osteoblast recruitment is achieved since the osteoblast-specific aptamer can specifically target osteoblasts with strong binding affinity. Micro-computed tomography and histological tests confirmed that the large bone defects fully heal with new plate-like-pattern bone appearing both peripherally and centrally, suggesting the outstanding bone regeneration performance of this cell-free and graphene functionalized scaffold. Considering the promising bioapplications of the graphene functionalized bioactive glass scaffold with osteoblast recruitment capacity, our strategy paves a way for the design of new bioactive functional materials for tissue regeneration and shows attractive prospects in targeted therapy.


Chemistry: A European Journal | 2017

Simultaneous Visualization and Quantitation of Multiple Steroid Hormones Based on Signal-amplified Biosensing with Duplex Molecular Recognition

Yaning Tan; Xiaoxia Hu; Meng Liu; Xinwen Liu; Xiaobo Lv; Zhihao Li; Jie Wang; Quan Yuan

The simultaneous quantitation of multiple steroid hormones in real time is of great importance in medical diagnosis. In this study, a portable hormone biosensor based on duplex molecular recognition coupled with a signal-amplified substrate was successfully developed for the simultaneous visualization and quantitation of multiple steroid hormones. Aptamer-functionalized upconversion nanoparticles (UCNPs) with different emission peaks are immobilized on the photonic crystal (PC) substrate as the nanoprobes, leading to the specific and simultaneous assay of multiple steroid hormones. Coupled with the luminescence-enhanced effect of the PC substrate, nanomolar quantification limits of multiple hormones are achieved. This well-designed biosensor is also promising in the quantification of multiple hormones in serum samples. The amplified luminescence signals can be visualized with the naked eye and captured by an unmodified phone camera. This hormone quantitation biosensor exhibits the advantages of multi-detection, visualization, high sensitivity, and selectivity for potential applications in clinical disease diagnosis.


Inorganic chemistry frontiers | 2017

Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles

Qinqin Ma; Jie Wang; Zhiheng Li; Dong Wang; Xiaoxia Hu; Yisheng Xu; Quan Yuan

Information security has attracted broad attention in todays information age, and information encryption on paper has been widely studied since paper is still the most important information carrier. Fluorescent inks are commonly used in information encryption on paper, but they suffer from background fluorescence interference. Herein, we develop a background-free and easy-to-perform method for information encryption based on the inkjet printing of upconversion nanoparticles (UCNPs). The UCNPs can efficiently eliminate background fluorescence interference since phosphors in paper cannot be activated by near-infrared (NIR) light. Moreover, owing to their small size, excellent dispersibility and good stability, UCNP inks can be directly applied to commercial inkjet printers for convenient and high-throughput information encryption on paper. Information was easily printed on different kinds of paper substrates and the information can only be visualized under NIR light excitation. Furthermore, a novel information encryption strategy was designed by utilizing UCNPs with different excitation wavelengths. Only excitation at the defined wavelength can obtain the correct information. This proposed information encryption strategy can completely avoid background fluorescence interference, and it also features easy operation, high throughput as well as low costs, indicating its good promise to serve as a household encryption method in our daily life.


Chemical Science | 2017

Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes

Xiaoxia Hu; Yingqian Wang; Haoyang Liu; Jie Wang; Yaning Tan; Fubing Wang; Quan Yuan; Weihong Tan

Collaboration


Dive into the Xiaoxia Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haibo Zeng

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge